學(xué)校決定對教學(xué)樓部分房間配制現(xiàn)代化的電子教學(xué)設(shè)備,并對其中兩種電子設(shè)備配備外殼,現(xiàn)有A種電子裝置45臺(tái),B種電子裝置55臺(tái),需用到兩種規(guī)格的薄金屬板;甲種薄金屬板每張面積2m2,可做A、B的外殼分別為3個(gè)和5個(gè),乙種薄金屬板每張面積3m2,可做A、B的外殼各6個(gè),求兩種薄金屬板各用多少線時(shí),才能使用料總的面積最。
分析:本題考查的知識點(diǎn)是簡單的線性規(guī)劃的應(yīng)用,根據(jù)已知條件中解:設(shè)用甲種薄金屬板x張,乙種薄金屬板y張,則可做A種的外殼分別為3x+6y個(gè),A種的外殼分別為5x+6y個(gè),由題意得出約束條件,及目標(biāo)函數(shù),然后利用線性規(guī)劃,求出最優(yōu)解.
解答:精英家教網(wǎng)解:設(shè)用甲種薄金屬板x張,乙種薄金屬板y張,則可做A種的外殼分別為3x+6y個(gè),A種的外殼分別為5x+6y個(gè),
由題意得:
3x+6y≥45
5x+6y≥55
x≥0
y≥0
,
所有薄金屬板的總面積為:x=2x+3y
可行區(qū)域如圖,其中A(5,5)
因目標(biāo)函數(shù)x=2x+3y可行域上的最小值在點(diǎn)A處取得,
此時(shí)z的最小值為:2×5+3×5=25.
答:兩種薄金屬板各用5張時(shí),才能使用料總的面積最小.
點(diǎn)評:在解決線性規(guī)劃的應(yīng)用題時(shí),其步驟為:①分析題目中相關(guān)量的關(guān)系,列出不等式組,即約束條件?②由約束條件畫出可行域?③分析目標(biāo)函數(shù)Z與直線截距之間的關(guān)系?④使用平移直線法求出最優(yōu)解?⑤還原到現(xiàn)實(shí)問題中.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

學(xué)校決定對教學(xué)樓部分房間配制現(xiàn)代化的電子教學(xué)設(shè)備,并對其中兩種電子設(shè)備配備外殼,現(xiàn)有A種電子裝置45臺(tái),B種電子裝置55臺(tái),需用到兩種規(guī)格的薄金屬板;甲種薄金屬板每張面積2m2,可做A、B的外殼分別為3個(gè)和5個(gè),乙種薄金屬板每張面積3m2,可做A、B的外殼各6個(gè),求兩種薄金屬板各用多少線時(shí),才能使用料總的面積最。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年廣西桂林市高三第一次調(diào)研數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

學(xué)校決定對教學(xué)樓部分房間配制現(xiàn)代化的電子教學(xué)設(shè)備,并對其中兩種電子設(shè)備配備外殼,現(xiàn)有A種電子裝置45臺(tái),B種電子裝置55臺(tái),需用到兩種規(guī)格的薄金屬板;甲種薄金屬板每張面積2m2,可做A、B的外殼分別為3個(gè)和5個(gè),乙種薄金屬板每張面積3m2,可做A、B的外殼各6個(gè),求兩種薄金屬板各用多少線時(shí),才能使用料總的面積最。

查看答案和解析>>

同步練習(xí)冊答案