分析:(Ⅰ)先求f(x)的導數(shù),再求f'(x)的導數(shù),從而確定f'(x)的單調性,由此可求導數(shù)f'(x)的極小值;
(Ⅱ)解法1:對任意的t>0,記函數(shù)
Ft(x)=f(x)-tx2=ex-[1+x+(k+t)x2](x>0),分類討論,確定函數(shù)F'
t(x)在(0,s)上的單調性,從而可得F
t(x)在(0,s)上的單調性,由此可求實數(shù)k的取值范圍;
解法2:分離參數(shù)可得
<t成立,即
≤0成立,則存在s>0,使得當x∈(0,s)時,f(x)≤0成立,求導函數(shù),可得當x∈(0,s)時,f
′′(x)≤0成立,由此可求實數(shù)k的取值范圍.
解答:解:(Ⅰ)當k=1時,函數(shù)f(x)=e
x-(1+x+x
2)(x>0),
則f(x)的導數(shù)f'(x)=e
x-(1+2x),f'(x)的導數(shù)f''(x)=e
x-2.…(2分)
令f''(x)=e
x-2=0,可得x=ln2,
當0<x<ln2時,f''(x)<0;當x>ln2時,f''(x)>0,
從而f'(x)在(0,ln2)內遞減,在(ln2,+∞)內遞增.…(4分)
故導數(shù)f'(x)的極小值為f'(ln2)=1-2ln2…(6分)
(Ⅱ)解法1:對任意的t>0,記函數(shù)
Ft(x)=f(x)-tx2=ex-[1+x+(k+t)x2](x>0),
根據題意,存在s>0,使得當x∈(0,s)時,F(xiàn)
t(x)<0.
則F
t(x)的導數(shù)
F′t(x)=ex-[1+2(k+t)x],F(xiàn)'
t(x)的導數(shù)
Ft′′(x)=ex-2(k+t)…(9分)
①若
Ft′′(0)≥0,因
Ft′′(x)在(0,s)上遞增,故當x∈(0,s)時,
Ft′′(x)>
Ft′′(0)≥0,
于是F'
t(x)在(0,s)上遞增,則當x∈(0,s)時,F(xiàn)'
t(x)>F'
t(0)=0,從而F
t(x)在(0,s)上遞增,故當x∈(0,s)時,F(xiàn)
t(x)>F
t(0)=0,與已知矛盾 …(11分)
②若
Ft′′(0)<0,注意到
Ft′′(x)在[0,s)上連續(xù)且遞增,故存在s>0,使得當x∈(0,s)
Ft′′(x)<0,從而F'
t(x)在(0,s)上遞減,于是當x∈(0,s)時,F(xiàn)'
t(x)<F'
t(0)=0,
因此F
t(x)在(0,s)上遞減,故當x∈(0,s)時,F(xiàn)
t(x)<F
t(0)=0,滿足已知條件…(13分)
綜上所述,對任意的t>0,都有
Ft′′(0)<0,即1-2(k+t)<0,亦即
k>-t,
再由t的任意性,得
k≥,經檢驗
k=不滿足條件,所以
k>…(15分)
解法2:由題意知,對任意的t>0,存在s>0,使得當x∈(0,s)時,都有
<t成立,即
≤0成立,則存在s>0,使得當x∈(0,s)時,f(x)≤0成立,
又f(0)=0,則存在s
0>0,使得當x∈(0,s
0)時,f(x)為減函數(shù),即當x∈(0,s
0)時使f'(x)=e
x-1-2kx≤0成立,
又f'(0)=0,故存在s
0>s>0,使得當x∈(0,s)時f'(x)為減函數(shù),
則當x∈(0,s)時f
′′(x)≤0成立,即e
x-2k≤0,得
k≥>.