寫出求方程2x+3=0的解的算法步驟:
S1________;S2________;S3________.
科目:高中數(shù)學(xué) 來源:宜春市2007屆高三年級第一次模擬考試 題型:044
對于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0)
定義:(1)設(shè)(x)是函數(shù)y=f(x)的導(dǎo)數(shù)y=(x)的導(dǎo)數(shù),若方程(x)=0有實數(shù)解x0,則稱點為函數(shù)y=f(x)的“拐點”;
定理:(2)設(shè)x0為常數(shù),若定義在R上的函數(shù)y=f(x)對于定義域內(nèi)的一切實數(shù)x,都有f(x0+x)+f(x0-x)=2f(x0)成立,則函數(shù)y=f(x)的圖象關(guān)于點對稱.
己知f(x)=x3-3x2+2x+2
求:(Ⅰ)求函數(shù)f(x)的“拐點”A的坐標(biāo)
(Ⅱ)檢驗函數(shù)f(x)的圖象是否關(guān)于“拐點”A對稱,對于任意的三次函數(shù)寫出一個有關(guān)“拐點”的結(jié)論(不必證明)
(Ⅲ)寫出一個三次函數(shù)G(x),使得它的“拐點”是(-1,3)(不要過程)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:貴州省清華實驗學(xué)校2009-2010學(xué)年高一上學(xué)期期末考試數(shù)學(xué)試卷 題型:044
如圖,圓C:x2+y2-2x-8=0內(nèi)有一點P(2,2),過點P作直線l交圓于A,B兩點.
(1)當(dāng)直線l經(jīng)過圓心C時,求直線l的方程;
(2)當(dāng)弦AB被點P平分時,寫出直線l程;
(3)當(dāng)直線l傾斜角為45°時,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:江蘇省梅村高級中學(xué)2012屆高三11月練習(xí)數(shù)學(xué)試題 題型:044
對于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0).
定義:(1)設(shè)(x)是函數(shù)y=f(x)的導(dǎo)數(shù)y=(x)的導(dǎo)數(shù),若方程(x)=0有實數(shù)解x0,則稱點(x0,f(x0))為函數(shù)y=f(x)的“拐點”;
定義:(2)設(shè)x0為常數(shù),若定義在R上的函數(shù)y=f(x)對于定義域內(nèi)的一切實數(shù)x,都有f(x0+x)+f(x0-x)=2f(x0)成立,則函數(shù)y=f(x)的圖象關(guān)于點(x0,f(x0))對稱.
己知f(x)=x3-3x2+2x+2,請回答下列問題:
(1)求函數(shù)f(x)的“拐點”A的坐標(biāo)
(2)檢驗函數(shù)f(x)的圖象是否關(guān)于“拐點”A對稱,對于任意的三次函數(shù)寫出一個有關(guān)“拐點”的結(jié)論(不必證明)
(3)寫出一個三次函數(shù)G(x),使得它的“拐點”是(-1,3)(不要過程)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年山東省青島市高三上學(xué)期單元測試數(shù)學(xué) 題型:解答題
三、解答題:解答應(yīng)寫出文字說明、證明過程或演算步驟(本大題共6個大題,共76分)。
17.(12分)以下資料是一位銷售經(jīng)理收集來的每年銷售額和銷售經(jīng)驗?zāi)陻?shù)的關(guān)系:
銷售經(jīng)驗(年) |
1 |
3 |
4 |
4 |
6 |
8 |
10 |
10 |
11 |
13 |
年銷售額(千元) |
80 |
97 |
92 |
102 |
103 |
111 |
119 |
123 |
117 |
136 |
(1)依據(jù)這些數(shù)據(jù)畫出散點圖并作直線=78+4.2x,計算(yi-i)2;
(2)依據(jù)這些數(shù)據(jù)由最小二乘法求線性回歸方程,并據(jù)此計算;
(3)比較(1)和(2)中的殘差平方和的大。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com