觀察分析下表中的數(shù)據(jù):
多面體 | 面數(shù)() | 頂點(diǎn)數(shù)() | 棱數(shù)() |
三棱錐 | 5 | 6 | 9 |
五棱錐 | 6 | 6 | 10 |
立方體 | 6 | 8 | 12 |
猜想一般凸多面體中,所滿足的等式是_________.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
將函數(shù)的圖象向右平移個(gè)單位長(zhǎng)度,所得圖象對(duì)應(yīng)的函數(shù)( )
A.在區(qū)間上單調(diào)遞減
B.在區(qū)間上單調(diào)遞增
C.在區(qū)間上單調(diào)遞減
D.在區(qū)間上單調(diào)遞增
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)樣本數(shù)據(jù)的均值和方差分別為1和4,若(為非零常數(shù), ),則的均值和方差分別為( )
(B) (C) (D)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
四面體及其三視圖如圖所示,過棱的中點(diǎn)作平行于,的平面分
別交四面體的棱于點(diǎn).
(I)證明:四邊形是矩形;
(II)求直線與平面夾角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
為了得到函數(shù)的圖象,只需把函數(shù)的圖象上所有的點(diǎn)( )
A、向左平行移動(dòng)個(gè)單位長(zhǎng)度B、向右平行移動(dòng)個(gè)單位長(zhǎng)度
C、向左平行移動(dòng)個(gè)單位長(zhǎng)度D、向右平行移動(dòng)個(gè)單位長(zhǎng)度
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知橢圓:()的左焦點(diǎn)為,離心率為。
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)為坐標(biāo)原點(diǎn),為直線上一點(diǎn),過作的垂線交橢圓于,。當(dāng)四邊形是平行四邊形時(shí),求四邊形的面積。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知雙曲線的兩條漸近線分別為.
(1)求雙曲線的離心率;
(2)如圖,為坐標(biāo)原點(diǎn),動(dòng)直線分別交直線于兩點(diǎn)(分別在第一,
四象限),且的面積恒為8,試探究:是否存在總與直線有且只有一個(gè)公
共點(diǎn)的雙曲線?若存在,求出雙曲線的方程;若不存在,說明理由。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com