【題目】如圖,在四棱錐P﹣ABCD中,PA⊥平面ABCD,E為PA的中點,F(xiàn)為BC的中點,底面ABCD是菱形,對角線AC,BD交于點O.求證:
(1)平面EFO∥平面PCD;
(2)平面PAC⊥平面PBD.
【答案】
(1)解:因為E為PA的中點,O為AC的中點,所以EO∥PC
又EO平面PCD,PC平面PCD,所以EO∥平面PCD
同理可證,F(xiàn)O∥平面PCD,又EO∩FO=O
所以,平面EFO∥平面PCD
(2)解:因為PA⊥平面ABCD,BD平面ABCD,所以PA⊥BD
因為底面ABCD是菱形,所以AC⊥BD,又PA∩AC=A
所以BD⊥平面PAC
又BD平面PBD,所以平面PAC⊥平面PBD
【解析】(1)由題意知,EO∥PC,由線面平行的判定定理得到EO∥平面PCD,同理可證,F(xiàn)O∥平面PCD,再由面面平行的判定定理,即得證平面EFO∥平面PCD.(2)由于PA⊥平面ABCD,得到PA⊥BD,再由已知得到BD⊥平面PAC,由面面垂直的判定定理,即得證平面PAC⊥平面PBD.
【考點精析】關于本題考查的平面與平面平行的判定和平面與平面垂直的判定,需要了解判斷兩平面平行的方法有三種:用定義;判定定理;垂直于同一條直線的兩個平面平行;一個平面過另一個平面的垂線,則這兩個平面垂直才能得出正確答案.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)= 其中M∪P=R,則下列結論中一定正確的是( )
A.函數(shù)f(x)一定存在最大值
B.函數(shù)f(x)一定存在最小值
C.函數(shù)f(x)一定不存在最大值
D.函數(shù)f(x)一定不存在最小值
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設等差數(shù)列{an}滿足a3=5,a10=﹣9. (Ⅰ)求{an}的通項公式;
(Ⅱ)求{an}的前n項和Sn及使得Sn最大的序號n的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某班有學生50人,其中男同學30人,用分層抽樣的方法從該班抽取5人去參加某社區(qū)服務活動.
(1)求從該班男女同學在各抽取的人數(shù);
(2)從抽取的5名同學中任選2名談此活動的感受,求選出的2名同學中恰有1名男同學的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD邊長為1,從某時刻起,將線段AB,BC,CD,DA分別繞點A,B,C,D順時針旋轉相同角度α(0<α< ),若旋轉后的四條線段所圍成的封閉圖形面積為 ,則α=( )
A. 或
B. 或
C. 或
D. 或
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線l過點P(﹣2,1).
(1)當直線l與點B(﹣5,4)、C(3,2)的距離相等時,求直線l的方程;
(2)當直線l與x軸、y軸圍成的三角形的面積為 時,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某班50人的一次競賽成績的頻數(shù)分布如下:[60,70):3人,[70,80):16人,[80,90):24人,[90,100]:7人,利用各組區(qū)間中點值,可估計本次比賽該班的平均分為( )
A.56
B.68
C.78
D.82
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖的莖葉圖記錄了甲、乙兩組各5名學生在一次英語聽力測試中的成績(單位:分).已知甲組數(shù)據(jù)的中位數(shù)為15,乙組數(shù)據(jù)的平均數(shù)為16.8,則x、y的值分別為( )
A.2,5
B.5,5
C.5,8
D.8,8
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知△ABC的頂點A(5,1),AB邊上的中線CM所在直線方程為2x﹣y﹣5=0,∠B的平分線BN所在直線方程為x﹣2y﹣5=0.求:
(1)頂點B的坐標;
(2)直線BC的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com