已知以點(diǎn)C (t∈R,t≠0)為圓心的圓與x軸交于點(diǎn)O、A,與y軸交于點(diǎn)O、B,其中O為原點(diǎn).
(1) 求證:△AOB的面積為定值;
(2) 設(shè)直線(xiàn)2x+y-4=0與圓C交于點(diǎn)M、N,若|OM|=|ON|,求圓C的方程;
(3) 在(2)的條件下,設(shè)P、Q分別是直線(xiàn)l:x+y+2=0和圓C的動(dòng)點(diǎn),求|PB|+|PQ|的最小值及此時(shí)點(diǎn)P的坐標(biāo).
解:(1) 由題設(shè)知,圓C的方程為(x-t)2+=t2+,化簡(jiǎn)得x2-2tx+y2-y=0,當(dāng)y=0時(shí),x=0或2t,則A(2t,0);當(dāng)x=0時(shí),y=0或,則B,
∴ SΔAOB=|OA|·|OB|=|2t|·=4為定值.
(2) ∵ |OM|=|ON|,則原點(diǎn)O在MN的中垂線(xiàn)上,設(shè)MN的中點(diǎn)為H,則CH⊥MN,∴ C、H、O三點(diǎn)共線(xiàn),則直線(xiàn)OC的斜率k=,∴ t=2或t=-2,
∴ 圓心C(2,1)或C(-2,-1)∴ 圓C的方程為(x-2)2+(y-1)2=5或(x+2)2+(y+1)2=5,由于當(dāng)圓方程為(x+2)2+(y+1)2=5時(shí),直線(xiàn)2x+y-4=0到圓心的距離d>r,此時(shí)不滿(mǎn)足直線(xiàn)與圓相交,故舍去.
∴ 圓C的方程為(x-2)2+(y-1)2=5
(3) 點(diǎn)B(0,2)關(guān)于直線(xiàn)x+y+2=0的對(duì)稱(chēng)點(diǎn)為B′(-4,-2),則|PB|+|PQ|=|PB′|+|PQ|≥|B′Q|,又B′到圓上點(diǎn)Q的最短距離為|B′C|-r=-=3-=2.
所以|PB|+|PQ|的最小值2,直線(xiàn)B′C的方程為y=x,則直線(xiàn)B′C與直線(xiàn)x+y+2=0的交點(diǎn)P的坐標(biāo)為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
設(shè)a∈R,則“a=1”是“直線(xiàn)l1:ax+2y-1=0與直線(xiàn)l2:x+(a+1)y+4=0平行”的________條件.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
如圖,在平面直角坐標(biāo)系xOy中,橢圓C的中心在坐標(biāo)原點(diǎn)O,右焦點(diǎn)為F.若C的右準(zhǔn)線(xiàn)l的方程為x=4,離心率e=.
(1) 求橢圓C的標(biāo)準(zhǔn)方程;
(2) 設(shè)點(diǎn)P為準(zhǔn)線(xiàn)l上一動(dòng)點(diǎn),且在x軸上方.圓M經(jīng)過(guò)O、F、P三點(diǎn),求當(dāng)圓心M到x軸的距離最小時(shí)圓M的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
復(fù)數(shù)在復(fù)平面上對(duì)應(yīng)的點(diǎn)位于
A.第四象限 B.第三象限 C.第二象限 D.第一象限
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
用分別表示中的最大與最小者,有下列結(jié)論:
①;
②;
③若,則;
④若,則。
其中正確結(jié)論的個(gè)數(shù)是( )
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
為選拔運(yùn)動(dòng)員參加比賽,測(cè)得7名選手的身高(單位:cm)分布莖葉圖為記錄的平均身高為177 cm,有一名候選人的身高記錄不清楚,其末位數(shù)字記為x,那么x的值 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com