甲、乙、丙三人射擊同一目標,各射擊一次,已知甲擊中目標的概率為,乙與丙擊中目標的概率分別為m、n(m>n),每人是否擊中目標是相互獨立的,記目標被擊中的次數(shù)為ξ,且ξ的分布列如下表:
ξ
0
1
2
3
P
a
b
(Ⅰ)求m,n的值;
(Ⅱ)求ξ的數(shù)學(xué)期望.
解:(Ⅰ)由題設(shè)可得,,化簡,得,  ①

,
聯(lián)立①②,可得
(Ⅱ)由題設(shè),得
,
。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)甲、乙、丙三人射擊同一目標,各射擊一次,已知甲擊中目標的概率為
35
,乙與丙擊中目標的概率分別為m、n(m>n),每人是否擊中目標是相互獨立的.記目標被擊中的次數(shù)為ξ,且ξ的分布列如下表:
(I) 求m,n的值;
(II) 求ξ的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲、乙、丙三人射擊同一目標,各射擊一次,已知甲擊中目標的概率為
3
5
,乙與丙擊中目標的概率分別為m,n(m>n),每人是否擊中目標是相互獨立的.記目標被擊中的次數(shù)為ξ,且ξ的分布列如下表:
ξ 0 1 2 3
P
1
15
a b
1
5
(Ⅰ)求m,n的值;
(Ⅱ)求ξ的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲、乙、丙三人射擊同一目標,各射擊一次,是否擊中是相互獨立的.將甲、乙、丙各自擊中目標依次記為事件A,B,C,它們的對立事件分別記為
.
A
,
.
B
.
C
.若P(A)=
3
5
,P(ABC)=
1
5
,P(
.
A
 
.
B
 
.
C
)=
1
15
,且P(B)>P(C).
(Ⅰ) 求至少有一人擊中目標的概率;
(Ⅱ) 求P(B)、P(C)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

甲、乙、丙三人射擊同一目標,各射擊一次,已知甲擊中目標的概率為數(shù)學(xué)公式,乙與丙擊中目標的概率分別為m、n(m>n),每人是否擊中目標是相互獨立的.記目標被擊中的次數(shù)為ξ,且ξ的分布列如下表:
(I) 求m,n的值;
(II) 求ξ的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年重慶八中高三(下)第七次月考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

甲、乙、丙三人射擊同一目標,各射擊一次,是否擊中是相互獨立的.將甲、乙、丙各自擊中目標依次記為事件A,B,C,它們的對立事件分別記為,,.若,,且P(B)>P(C).
(Ⅰ) 求至少有一人擊中目標的概率;
(Ⅱ) 求P(B)、P(C)的值.

查看答案和解析>>

同步練習(xí)冊答案