分析 (Ⅰ)由題意得{a=2ca=12a2=2+c2,求出b,由此能求出橢圓C的方程;
(Ⅱ)設(shè)A(x1,y1),B(x2,y2),Q(x3,y3),求出p點(diǎn)的坐標(biāo),由B,Q,P三點(diǎn)共線,得\overrightarrow{BP}=λ\overrightarrow{BQ},聯(lián)立方程組求解得x3,y3,再結(jié)合已知條件能求出λ值,則\frac{|BP|}{|BQ|}的值可求.
解答 解:(Ⅰ)由題意得\left\{\begin{array}{l}{a=2}\\{\frac{c}{a}=\frac{1}{2}}\\{{a}^{2}=^{2}+{c}^{2}}\end{array}\right.,
解得b=\sqrt{3}.
∴橢圓C的方程為\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1;
(Ⅱ)設(shè)A(x1,y1),B(x2,y2),Q(x3,y3),
∵點(diǎn)P在直線AO上且滿足|PO|=3|OA|,
∴P(3x1,3y1).
∵B,Q,P三點(diǎn)共線,
∴\overrightarrow{BP}=λ\overrightarrow{BQ}.
∴(3x1-x2,3y1-y2)=λ(x3-x2,y3-y2),
即\left\{\begin{array}{l}{3{x}_{1}-{x}_{2}=λ({x}_{3}-{x}_{2})}\\{3{y}_{1}-{y}_{2}=λ({y}_{3}-{y}_{2})}\end{array}\right.,
解得\left\{\begin{array}{l}{{x}_{3}=\frac{3}{λ}{x}_{1}+\frac{λ-1}{λ}{x}_{2}}\\{{y}_{3}=\frac{3}{λ}{y}_{1}+\frac{λ-1}{λ}{y}_{2}}\end{array}\right.,
∵點(diǎn)Q在橢圓C上,∴\frac{{{x}_{3}}^{2}}{4}+\frac{{{y}_{3}}^{2}}{3}=1.
∴\frac{(\frac{3}{λ}{x}_{1}+\frac{λ-1}{λ}{x}_{2})^{2}}{4}+\frac{(\frac{3}{λ}{y}_{1}+\frac{λ-1}{λ}{y}_{2})^{2}}{3}=1.
即\frac{9}{{λ}^{2}}(\frac{{{x}_{1}}^{2}}{4}+\frac{{{y}_{1}}^{2}}{3})+(\frac{λ-1}{λ})^{2}(\frac{{{x}_{2}}^{2}}{4}+\frac{{{y}_{2}}^{2}}{3})-\frac{6(λ-1)}{{λ}^{2}}(\frac{{x}_{1}{x}_{2}}{4}+\frac{{y}_{1}{y}_{2}}{3})=1,
∵A,B在橢圓C上,
∴\frac{{{x}_{1}}^{2}}{4}+\frac{{{y}_{1}}^{2}}{3}=1,\frac{{{x}_{2}}^{2}}{4}+\frac{{{y}_{2}}^{2}}{3}=1.
∵直線OA,OB的斜率之積為-\frac{3}{4},
∴\frac{{y}_{1}}{{x}_{1}}•\frac{{y}_{2}}{{x}_{2}}=-\frac{3}{4},即\frac{{x}_{1}{x}_{2}}{4}+\frac{{y}_{1}{y}_{2}}{3}=0.
∴\frac{9}{{λ}^{2}}+(\frac{λ-1}{λ})^{2}=1,解得λ=5.
∴\frac{|BP|}{|BQ|}=|λ|=5.
點(diǎn)評(píng) 本題考查橢圓的標(biāo)準(zhǔn)方程,考查直線與橢圓位置關(guān)系的應(yīng)用,訓(xùn)練了向量法在求解圓錐曲線問題中的應(yīng)用,考查運(yùn)算能力,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (x-1)2+(y+4)2=2 | B. | (x+1)2+(y-4)2=2 | C. | (x-1)2+(y-4)2=2 | D. | (x+1)2+(y+4)2=2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | \sqrt{14} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 130萬元 | B. | 130.25萬元 | C. | 120萬元 | D. | 100萬元 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com