Processing math: 13%
15.已知橢圓C:x2a2+y2b2=1(a>b>0)經(jīng)過點(diǎn)M(2,0),離心率為12.A,B是橢圓C上兩點(diǎn),且直線OA,OB的斜率之積為-34,O為坐標(biāo)原點(diǎn).
(Ⅰ)求橢圓C的方程;
(Ⅱ)若射線OA上的點(diǎn)P滿足|PO|=3|OA|,且PB與橢圓交于點(diǎn)Q,求|BP||BQ|的值.

分析 (Ⅰ)由題意得{a=2ca=12a2=2+c2,求出b,由此能求出橢圓C的方程;
(Ⅱ)設(shè)A(x1,y1),B(x2,y2),Q(x3,y3),求出p點(diǎn)的坐標(biāo),由B,Q,P三點(diǎn)共線,得\overrightarrow{BP}=λ\overrightarrow{BQ},聯(lián)立方程組求解得x3,y3,再結(jié)合已知條件能求出λ值,則\frac{|BP|}{|BQ|}的值可求.

解答 解:(Ⅰ)由題意得\left\{\begin{array}{l}{a=2}\\{\frac{c}{a}=\frac{1}{2}}\\{{a}^{2}=^{2}+{c}^{2}}\end{array}\right.
解得b=\sqrt{3}
∴橢圓C的方程為\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1;
(Ⅱ)設(shè)A(x1,y1),B(x2,y2),Q(x3,y3),
∵點(diǎn)P在直線AO上且滿足|PO|=3|OA|,
∴P(3x1,3y1).
∵B,Q,P三點(diǎn)共線,
\overrightarrow{BP}=λ\overrightarrow{BQ}
∴(3x1-x2,3y1-y2)=λ(x3-x2,y3-y2),
\left\{\begin{array}{l}{3{x}_{1}-{x}_{2}=λ({x}_{3}-{x}_{2})}\\{3{y}_{1}-{y}_{2}=λ({y}_{3}-{y}_{2})}\end{array}\right.,
解得\left\{\begin{array}{l}{{x}_{3}=\frac{3}{λ}{x}_{1}+\frac{λ-1}{λ}{x}_{2}}\\{{y}_{3}=\frac{3}{λ}{y}_{1}+\frac{λ-1}{λ}{y}_{2}}\end{array}\right.,
∵點(diǎn)Q在橢圓C上,∴\frac{{{x}_{3}}^{2}}{4}+\frac{{{y}_{3}}^{2}}{3}=1
\frac{(\frac{3}{λ}{x}_{1}+\frac{λ-1}{λ}{x}_{2})^{2}}{4}+\frac{(\frac{3}{λ}{y}_{1}+\frac{λ-1}{λ}{y}_{2})^{2}}{3}=1
\frac{9}{{λ}^{2}}(\frac{{{x}_{1}}^{2}}{4}+\frac{{{y}_{1}}^{2}}{3})+(\frac{λ-1}{λ})^{2}(\frac{{{x}_{2}}^{2}}{4}+\frac{{{y}_{2}}^{2}}{3})-\frac{6(λ-1)}{{λ}^{2}}(\frac{{x}_{1}{x}_{2}}{4}+\frac{{y}_{1}{y}_{2}}{3})=1,
∵A,B在橢圓C上,
\frac{{{x}_{1}}^{2}}{4}+\frac{{{y}_{1}}^{2}}{3}=1\frac{{{x}_{2}}^{2}}{4}+\frac{{{y}_{2}}^{2}}{3}=1
∵直線OA,OB的斜率之積為-\frac{3}{4}
\frac{{y}_{1}}{{x}_{1}}•\frac{{y}_{2}}{{x}_{2}}=-\frac{3}{4},即\frac{{x}_{1}{x}_{2}}{4}+\frac{{y}_{1}{y}_{2}}{3}=0
\frac{9}{{λ}^{2}}+(\frac{λ-1}{λ})^{2}=1,解得λ=5.
\frac{|BP|}{|BQ|}=|λ|=5.

點(diǎn)評(píng) 本題考查橢圓的標(biāo)準(zhǔn)方程,考查直線與橢圓位置關(guān)系的應(yīng)用,訓(xùn)練了向量法在求解圓錐曲線問題中的應(yīng)用,考查運(yùn)算能力,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知橢圓C1\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1(a>b>0)的左、右焦點(diǎn)分別為F1、F2,離心率為\frac{\sqrt{2}}{2},橢圓上一點(diǎn)P滿足|PF1|•|PF2|的最大值是2,O為坐標(biāo)原點(diǎn).
(I)求橢圓C1的方程;
(Ⅱ)若直線l與圓x2+y2=b2只有一個(gè)交點(diǎn),并與橢圓C1交于不同的兩點(diǎn)A、B,當(dāng)\frac{2}{3}\overrightarrow{OA}\overrightarrow{OB}\frac{3}{4}時(shí),求△AOB面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.一半徑為4米的水輪如圖所示,水輪圓心O距離水面2米,已知水輪每60秒逆時(shí)針轉(zhuǎn)動(dòng)5圈,如果當(dāng)水輪上點(diǎn)P從水中浮現(xiàn)時(shí)(圖象P0點(diǎn))開始計(jì)算時(shí)間,且點(diǎn)P距離水面的高度f(t)(米)與時(shí)間t(秒)滿足函數(shù):f(t)=Asin(ω+φ)+B(A>0,ω>0,|φ|<\frac{π}{2}).
(1)求函數(shù)f(t)的解析式;
(2)點(diǎn)P第二次到達(dá)最高點(diǎn)要多長(zhǎng)時(shí)間?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知集合A是函數(shù)f(x)={log_{\frac{1}{2}}}({x-1})的定義域,集合B是函數(shù)g(x)=2x,x∈[-1,2]的值域.
(1)求集合A;
(2)求集合B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.設(shè)函數(shù)f(x)=x•lnx+ax,a∈R.
(Ⅰ)當(dāng)a=1時(shí),求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)求函數(shù)y=f(x)在[\frac{1}{e},e]上的最小值;
(Ⅲ)若g(x)=f(x)+\frac{1}{2}a{x^2}-(2a+1)x,求證:a≥0是函數(shù)y=g(x)在x∈(1,2)時(shí)單調(diào)遞增的充分不必要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.圓心在直線2x-y-6=0上的圓C與y軸交于兩點(diǎn)A(0,-5),B(0,-3),則圓C的方程是( �。�
A.(x-1)2+(y+4)2=2B.(x+1)2+(y-4)2=2C.(x-1)2+(y-4)2=2D.(x+1)2+(y+4)2=2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知不等式(m-n)2+(m-lnn+λ)2≥2對(duì)任意m∈R,n∈(0,+∞)恒成立,則實(shí)數(shù)λ的取值范圍為λ≥1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.在空間直角坐標(biāo)中,點(diǎn)P(-1,-2,-3)到平面xOz的距離是( �。�
A.1B.2C.3D.\sqrt{14}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.某汽車銷售公司同時(shí)在甲、乙兩地銷售一種品牌車,利潤(rùn)(單位:萬元)分別為{L_1}=-{x^2}+21x和L2=2x(其中銷售量單位:輛).若該公司在兩地一共銷售20輛,則能獲得的最大利潤(rùn)為( �。�
A.130萬元B.130.25萬元C.120萬元D.100萬元

查看答案和解析>>

同步練習(xí)冊(cè)答案
关 闭