已知(1+sin2α)sinβ=sinαcosαcosβ(cosαcosβ≠0),設(shè)tanα=x,tanβ=y(tǒng)記y=f(x).

(1)求f(x)的解析表達式;

(2)若α角是一個三角形的最小內(nèi)角,試求函數(shù)f(x)的值域.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(sin2
π
6
x,cos2
π
6
x)
b
=(sin2
π
6
x,-cos2
π
6
x)
,g(x)=
a
b

(1)求函數(shù)g(x)的解析式.
(2)若集合M={f(x)|f(x)+f(x+2)=f(x+1),x∈R},試判斷g(x)與集合M的關(guān)系.
(3)記A={x|a≥2g(x)},B={x|y=
3x2-x-2
(a-5)x2+2(a-5)x-4
}
,若(?RA)∪(?RB)=∅,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(sin2
π+2x
4
,cosx+sinx)
b
=(4sinx,cosx-sinx)
f(x)=
a
b

(1)求f(x)的解析式;
(2)求f(x)的圖象、y軸的正半軸及x軸的正半軸三者圍成圖形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=sin2ωx+
3
cosωxcos(
π
2
-ωx)(ω>0)
,且函數(shù)y=f(x)的圖象相鄰兩條對稱軸之間的距離為
π
2

(1)求ω的值及f(x)的單調(diào)遞減區(qū)間;
(2)在△ABC中,a,b,c分別是角A,B,C的對邊,若a=1,b=
3
,f(A)=1求角C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=sin2(x-
π
6
)+sin2(x+
π
6
)+
3
sinxcosx

(1)求f(x)的最大值以及取得最大值時自變量x的取值構(gòu)成的集合;
(2)當自變量x∈[-
π
12
,
12
]
時,求f(x)的值域.

查看答案和解析>>

同步練習(xí)冊答案