在(2x+
1
x2
n的展開式中,第三項(xiàng)的二項(xiàng)式系數(shù)比第二項(xiàng)的二項(xiàng)式系數(shù)大27,求展開式中的常數(shù)項(xiàng)及系數(shù)最大的項(xiàng).
考點(diǎn):二項(xiàng)式系數(shù)的性質(zhì)
專題:二項(xiàng)式定理
分析:由條件求得n=9,可得展開式的通項(xiàng)公式,在二項(xiàng)式展開式的通項(xiàng)公式,再令x的冪指數(shù)等于0,求得r的值,即可求得展開式中的常數(shù)項(xiàng)的值.再根據(jù)二項(xiàng)式展開式的通項(xiàng)公式,求得系數(shù)最大的項(xiàng).
解答: 解:由已知得:
C
2
n
-
C
1
n
=27
,化簡(jiǎn)得:n2-3n-54=0,
解得:n=9,n=-6(舍).
故展開式的通項(xiàng)公式為Tr+1=
C
r
9
(2x)9-rx-2r=
C
r
9
29-rx9-3r
,令9-3r=0,則r=3,
T4=
C
3
9
26=5376
,故展開式的常數(shù)項(xiàng)為5376.
(2)若設(shè)第r+1項(xiàng)的系數(shù)最大,則有:
C
r
9
29-r
C
r-1
9
29-r+1
C
r
9
29-r
C
r+1
9
29-r-1

解得:
7
3
≤r≤
10
3
,∴r∈Z,∴r=3,∴T4=5376為系數(shù)最大項(xiàng).
點(diǎn)評(píng):本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)式系數(shù)的性質(zhì),二項(xiàng)式展開式的通項(xiàng)公式,求展開式中某項(xiàng)的系數(shù),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若sin(α-π)=2cos(α-2π),求
sin(7π-α)+5cos(2π-α)
3sin(
2
+α)-sin(-α)
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

袋子中共有12個(gè)球,其中有5個(gè)黑球,4個(gè)白球,3個(gè)紅球,從中任取2個(gè)球(假設(shè)取到每個(gè)球的可能性都相同).已知每取到一個(gè)黑球得0分,每取到一個(gè)白球得1分,每取到一個(gè)紅球得2分.用ξ表示任取2個(gè)球的得分的差的絕對(duì)值.
(1)求橢機(jī)變量ξ的分布列及ξ的數(shù)學(xué)期望Eξ;
(2)記“不等式ξx2-ξx+
1
2
>0的解集是實(shí)數(shù)集R”為事件A,求事件A發(fā)生的概率P(A).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(sinωx-cosωx,sinωx),
b
=(sinωx+cosωx,
3
cosωx).設(shè)函數(shù)f(x)=
a
b
+λ(x∈R)的圖象關(guān)于直線x=π對(duì)稱,其中ω,λ為常數(shù),且ω∈(
1
2
,1).
(1)求函數(shù)f(x)的最小正周期;
(2)若y=f(x)的圖象經(jīng)過點(diǎn)(
π
5
,0),求函數(shù)f(x)在區(qū)間[0,
π
2
]上的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在三棱柱ABC-A1B1C1中,B1B=B1A=AB=BC,∠B1BC=90°,D為AC的中點(diǎn),AB⊥B1D.
(Ⅰ)求證:平面ABB1A1⊥平面ABC;
(Ⅱ)求直線B1D與平面ACC1A1所成角的正弦值;
(Ⅲ)求二面角B-B1D-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

甲、乙兩人參加某電視臺(tái)舉辦的答題闖關(guān)游戲,按照規(guī)則,甲先從6道備選題中一次性抽取3道題獨(dú)立作答,然后由乙回答剩余3道題,每人答對(duì)其中2題就停止答題,即為闖關(guān)成功.已知6道備選題中,甲能答對(duì)其中的4道題,乙答對(duì)每道題的概率都是
2
3

(Ⅰ)求甲、乙至少有一人闖關(guān)成功的概率;
(Ⅱ)設(shè)乙答對(duì)題目的個(gè)數(shù)為η,求η的方差;
(Ⅲ)設(shè)甲答對(duì)題目的個(gè)數(shù)為ξ,求ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直角坐標(biāo)平面內(nèi),將每個(gè)點(diǎn)繞原點(diǎn)按逆時(shí)針方向旋轉(zhuǎn)45°的變換R所對(duì)應(yīng)的矩陣為M,將每個(gè)點(diǎn)橫、縱坐標(biāo)分別變?yōu)樵瓉?lái)的
2
倍的變換T所對(duì)應(yīng)的矩陣為N.
(Ⅰ)求矩陣M的逆矩陣M-1
(Ⅱ)求曲線xy=1先在變換R作用下,然后在變換T作用下得到的曲線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在三棱柱ABC-A1B1C1中,△ABC是邊長(zhǎng)為2的等邊三角形,AA1⊥平面ABC,D,E分別是CC1,AB的中點(diǎn).
(1)求證:CE∥平面A1BD;
(2)若H為A1B上的動(dòng)點(diǎn),CH與平面A1AB所成的最大角的正切值為
15
2
,求側(cè)棱AA1的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知曲線C:x2+y2=1,對(duì)它先作矩陣A=
10
02
對(duì)應(yīng)的變換,再作矩陣B=
0b
10
對(duì)應(yīng)的變換,得到曲線C:
x2
4
+y2=1.則實(shí)數(shù)b=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案