正方形ABCD所在平面與正方形ABEF所在平面成60°的二面角,則對(duì)角線AC與對(duì)角線BF對(duì)所成角的余弦值是__________。

 

【答案】

【解析】

試題分析:在平面ABCD內(nèi)取點(diǎn)G,H使A,B,G,H構(gòu)成正方形,對(duì)角線AC與對(duì)角線BF對(duì)所成角為,設(shè)正方形邊長(zhǎng)為1,,由余弦定理得

考點(diǎn):異面直線所成角及二面角

點(diǎn)評(píng):先由已知條件作出二面角與異面直線所成角,而后解三角形求其角的余弦

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,正方形ABCD所在的平面與三角形CDE所在的平面交于CD,AE⊥平面CDE,且AB=2AE.
(1)求證:AB∥平面CDE;
(2)求證:平面ABCD⊥平面ADE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2004•朝陽(yáng)區(qū)一模)如圖,已知PA垂直于正方形ABCD所在的平面,E、F分別為AB、PD的中點(diǎn),過(guò)AE、AF的平面交PC于點(diǎn)H,二面角P-CD-B為45°,PA=a.
(Ⅰ)求證:AF∥EH;
(Ⅱ)求證:平面PCE⊥平面PCD; 
(Ⅲ)求多面體ECDAHF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年北京市高三起點(diǎn)考試?yán)砜茢?shù)學(xué)卷 題型:解答題

(本小題滿分12分)

   如右圖,正方形ABCD所在平面與圓O所在平面相交于CD,線段CD為圓O的弦,AE垂直于圓O所在平面,垂足E是圓O上異于C、D的點(diǎn),AE=3,圓O的直徑為9。

   (1)求證:平面ABCD平在ADE;

   (2)求二面角D—BC—E的平面角的正切值;

                                

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年江蘇省南通市海門(mén)中學(xué)高三(上)開(kāi)學(xué)檢測(cè)數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,正方形ABCD所在的平面與三角形CDE所在的平面交于CD,AE⊥平面CDE,且AB=2AE.
(1)求證:AB∥平面CDE;
(2)求證:平面ABCD⊥平面ADE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2004年北京市朝陽(yáng)區(qū)高考數(shù)學(xué)一模試卷(文科)(解析版) 題型:解答題

如圖,已知PA垂直于正方形ABCD所在的平面,E、F分別為AB、PD的中點(diǎn),過(guò)AE、AF的平面交PC于點(diǎn)H,二面角P-CD-B為45°,PA=a.
(Ⅰ)求證:AF∥EH;
(Ⅱ)求證:平面PCE⊥平面PCD; 
(Ⅲ)求多面體ECDAHF的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案