是否存在實數(shù)a,使得函數(shù)y=sin2x+acos x+a-在閉區(qū)間上的最大值是1?若存在,求出對應的a值;若不存在,說明理由.
【答案】分析:利用二倍角公式對函數(shù)解析式化簡整理,進而利用x的范圍確定cosx的范圍,根據(jù)二次函數(shù)的性質(zhì)對a的范圍進行分類討論,求得函數(shù)的最大值.
解答:解:y=1-cos2x+acosx+a-
=-++-
當0≤x≤時,0≤cosx≤1,
>1,即a>2,則當cosx=1時
ymax=a+a-=1,
∴a=<2(舍去)
若0≤≤1即0≤a≤2,則當cosx=時,
ymax=+a-=1,
∴a=或a=-4(舍去).
<0,即a<0時,則當cosx=0時,
ymax=a-=1,
∴a=>0(舍去).
綜上所述,存在a=符合題設.
點評:本題主要考查了三角函數(shù)的求最值.考查了學生分析推理的能力,基礎知識的掌握程度.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

是否存在實數(shù)a,使得函數(shù)y=sin2x+acosx+
5
8
a-
3
2
在閉區(qū)間[0,
π
2
]
上的最大值是1?若存在,求出對應的a值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出函數(shù)封閉的定義:若對于定義域D內(nèi)的任意一個自變量x0,都有函數(shù)值f(x0)∈D,稱函數(shù)y=f(x)在D上封閉.
(1)若定義域D1=(0,1),判斷函數(shù)g(x)=2x-1是否在D1上封閉,并說明理由;
(2)若定義域D2=(1,5],是否存在實數(shù)a,使得函數(shù)f(x)=
5x-ax+2
在D2上封閉?若存在,求出a的取值范圍;若不存在,請說明理由.
(3)利用(2)中函數(shù),構造一個數(shù)列{xn},方法如下:對于給定的定義域D2=(1,5]中的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1),…在上述構造數(shù)列的過程中,如果xi(i=1,2,3,4…)在定義域中,構造數(shù)列的過程將繼續(xù)下去;如果xi不在定義域中,則構造數(shù)列的過程停止.
①如果可以用上述方法構造出一個無窮常數(shù)列{xn},求實數(shù)a的取值范圍.
②如果取定義域中任一值作為x1,都可以用上述方法構造出一個無窮數(shù)列{xn},求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知幾何體A-BCDE的三視圖如圖所示,其中俯視圖和側(cè)視圖都是腰長為4的等腰直角三角形,正視圖為直角梯形.
(1)若幾何體A-BCDE的體積為16,求實數(shù)a的值;
(2)若a=1,求異面直線DE與AB所成角的余弦值;
(3)是否存在實數(shù)a,使得二面角A-DE-B的平面角是45°,若存在,請求出a值;若不存在請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•黃岡模擬)已知函數(shù)y=f(x)的反函數(shù)為y=f-1(x),定義:若對給定的實數(shù)a(a≠0),函數(shù)y=f(x+a)與y=f-1(x+a)互為反函數(shù),則稱y=f(x)滿足“a和性質(zhì)”.
(1)判斷函數(shù)g(x)=(x+1)2+1,x∈[-2,-1]是否滿足“1和性質(zhì)”,并說明理由;
(2)若F(x)=kx+b,其中k≠0,x∈R滿足“2和性質(zhì)”,則是否存在實數(shù)a,使得F(9)<F(cos2θ+asinθ)<F(1)對任意的θ∈(0,π)恒成立?若存在,求出a的范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,圓C:x2-(1+a)x+y2-ay+a=0.
(Ⅰ)若圓C與x軸相切,求圓C的方程;
(Ⅱ)已知a>1,圓C與x軸相交于兩點M,N(點M在點N的左側(cè)).過點M任作一條直線與圓O:x2+y2=4相交于兩點A,B.問:是否存在實數(shù)a,使得∠ANM=∠BNM?若存在,求出實數(shù)a的值,若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案