已知在等比數(shù)列{an}中,2a2=a1+a3-1,a1=1,數(shù)列{bn}滿足b1+
b2
2
+
b3
3
+…+
bn
n
=an(n∈N*).
(Ⅰ)求數(shù)列{bn}的通項公式;
(Ⅱ)設(shè)數(shù)列{bn}的前n項和為Sn,求Sn
考點:數(shù)列的求和,數(shù)列遞推式
專題:等差數(shù)列與等比數(shù)列
分析:(Ⅰ)由已知得b1+
b2
2
+
b3
3
+…+
bn
n
=an=2n-1,從而b1+
b2
2
+
b3
3
+…+
bn-1
n-1
=2n-2,由此得到
bn
n
=2n-1,從而bn=n•2n-1
(Ⅱ)由bn=n•2n-1,利用錯位相減法能求出數(shù)列{bn}的前n項和.
解答: 解:(Ⅰ)∵等比數(shù)列{an}中,2a2=a1+a3-1,a1=1,
∴2a2=a3,∴q=
a3
a2
=2
,
∴an=2n-1,
∴b1+
b2
2
+
b3
3
+…+
bn
n
=an=2n-1,①
b1+
b2
2
+
b3
3
+…+
bn-1
n-1
=2n-2,②
①-②,得:
bn
n
=2n-1,
∴bn=n•2n-1
(Ⅱ)∵bn=n•2n-1,
∴Sn=1+2•2+3•22+4•23+…+n•2n-1,③
2Sn=2+2•22+3•23+4•24+…+n•2n,④
④-③,得:
Sn=-(1+2+22+23+…+2n-1)+n•2n
=-
1-2n
1-2
+n•2n
=(n-1)•2n+1.
點評:本題考查數(shù)列的通項公式和前n項和的求法,是中檔題,解題時要認(rèn)真審題,注意錯位相減法的合理運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若sinA=
2
5
,cosA=
1
5
,則∠A的度數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在邊長為2的正三角形ABC中,點P滿足
CP
=2
PB
,則
AP
CB
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xOy中,以原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,記ρ為極徑,θ為極角,設(shè)曲線ρsin(θ-
π
4
)=2
2
關(guān)于直線sinθ=cosθ對稱的曲線為C,則C的極坐標(biāo)方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,AC=2,BC=6,已知點O是△ABC內(nèi)一點,且滿足
OA
+3
OB
+4
OC
=
0
,則
OC
•(
BA
+2
BC
)
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=loga(x+b)的圖象經(jīng)過點(-3,0),和(0,-2),則a+b的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

u,v是實數(shù),則
(u-v)2+(
1-u2
-2v-5)2
的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若條件p:|x+1|>2,條件q:x>a且¬p是¬q的充分不必要條件,則a取值范圍是( 。
A、a≥1B、a≤1
C、a≥-3D、a≤-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖所示的程序框圖,輸出的結(jié)果為
 

查看答案和解析>>

同步練習(xí)冊答案