(2012•石景山區(qū)一模)某幾何體的三視圖如圖所示,則它的體積是( 。
分析:根據(jù)三視圖可知,幾何體是組合體,下面是正方體,棱長為2,上面是側(cè)棱長為2,底面邊長為2的正四棱錐,求出相應的體積,即可求得結(jié)論.
解答:解:由題意知,根據(jù)三視圖可知,幾何體是組合體,下面是正方體,棱長為2,體積為8;
上面是側(cè)棱長為2,底面邊長為2的正四棱錐,所以底面積為4,高為
4-2
=
2
,故體積為
4
2
3

∴幾何體的體積為8+
4
2
3

故選B.
點評:本題是基礎(chǔ)題,考查三視圖復原幾何體的判定,幾何體的體積的求法,考查空間想象能力,計算能力,?碱}型.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2012•石景山區(qū)一模)在復平面內(nèi),復數(shù)
2-i
1+i
對應的點位于(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•石景山區(qū)一模)在△ABC中,角A,B,C所對應的邊分別為a,b,c,且(2a-c)cosB=bcosC.
(Ⅰ)求角B的大;
(Ⅱ)若cosA=
2
2
,a=2
,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•石景山區(qū)一模)已知函數(shù)f(x)=x2+2alnx.
(Ⅰ)若函數(shù)f(x)的圖象在(2,f(2))處的切線斜率為1,求實數(shù)a的值;
(Ⅱ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅲ)若函數(shù)g(x)=
2x
+f(x)
在[1,2]上是減函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•石景山區(qū)一模)定義:若數(shù)列{An}滿足An+1=An2,則稱數(shù)列{An}為“平方遞推數(shù)列”.已知數(shù)列{an}中,a1=2,點(an,an+1)在函數(shù)f(x)=2x2+2x的圖象上,其中n為正整數(shù).
(1)證明:數(shù)列{2an+1}是“平方遞推數(shù)列”,且數(shù)列{lg(2an+1)}為等比數(shù)列.
(2)設(shè)(1)中“平方遞推數(shù)列”的前n項之積為Tn,即Tn=(2a1+1)(2a2+1)…(2an+1),求數(shù)列{an}的通項及Tn關(guān)于n的表達式.
(3)記bn=log2an+1Tn,求數(shù)列{bn}的前n項之和Sn,并求使Sn>2011的n的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•石景山區(qū)一模)圓
x=2cosθ
y=2sinθ+2
的圓心坐標是( 。

查看答案和解析>>

同步練習冊答案