若f (x) (x∈R)是以2為周期的偶函數(shù),當x∈[0,1]時,f(x)=數(shù)學公式,則f(數(shù)學公式),f(數(shù)學公式),f(數(shù)學公式)由小到大排列是________.

f()<f()<f(
分析:因為當x∈[0,1]時,f(x)=,則函數(shù)f(x)在[0,1]上為增函數(shù),再根據(jù)周期性和奇偶性把要比較的三個函數(shù)值都轉化為[0,1]內的函數(shù)值即可.
解答:因為函數(shù)的周期是2,所以6也是函數(shù)的周期,
所以f()=f(6-)=f(),
f()=f(6-)=f(),
f()=f(6+)=f().
而f(x)是[0,1]上的增函數(shù).由,得
所以f()<f()<f().
故答案為f()<f()<f().
點評:本題是考查函數(shù)的單調性、奇偶性和周期性的綜合題,考查數(shù)學轉化思想,解答此題的關鍵是借助于函數(shù)的周期,把要比較的函數(shù)值轉化到已知單調性的區(qū)間內.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點到直線x-y-3=0距離的最小值為
2
,求a的值;
(2)關于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個,求實數(shù)a的取值范圍;
(3)對于函數(shù)f(x)與g(x)定義域上的任意實數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2006•松江區(qū)模擬)(文)已知函數(shù)f(x)=ax2-2
4+2b-b2
x
,g(x)=-
1-(x-a)2
,(a,b∈R)
(Ⅰ)當b=0時,若f(x)在[2,+∞)上單調遞增,求a的取值范圍;
(Ⅱ)求滿足下列條件的所有實數(shù)對(a,b):當a是整數(shù)時,存在x0,使得f(x0)是f(x)的最大值,g(x0)是g(x)的最小值;
(Ⅲ)對滿足(Ⅱ)的條件的一個實數(shù)對(a,b),試構造一個定義在D={x|x>-2,且x≠2k-2,k∈N}上的函數(shù)h(x),使當x∈(-2,0)時,h(x)=f(x),當x∈D時,h(x)取得最大值的自變量的值構成以x0為首項的等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源:徐州模擬 題型:解答題

設函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點到直線x-y-3=0距離的最小值為2
2
,求a的值;
(2)關于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個,求實數(shù)a的取值范圍;
(3)對于函數(shù)f(x)與g(x)定義域上的任意實數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年廣東省湛江二中高二(上)期中數(shù)學試卷(解析版) 題型:解答題

(文)已知函數(shù),,(a,b∈R)
(Ⅰ)當b=0時,若f(x)在[2,+∞)上單調遞增,求a的取值范圍;
(Ⅱ)求滿足下列條件的所有實數(shù)對(a,b):當a是整數(shù)時,存在x,使得f(x)是f(x)的最大值,g(x)是g(x)的最小值;
(Ⅲ)對滿足(Ⅱ)的條件的一個實數(shù)對(a,b),試構造一個定義在D={x|x>-2,且x≠2k-2,k∈N}上的函數(shù)h(x),使當x∈(-2,0)時,h(x)=f(x),當x∈D時,h(x)取得最大值的自變量的值構成以x為首項的等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源:2006年上海市八校高三聯(lián)考數(shù)學試卷(松江二中、青浦、七寶、育才、市二、行知、位育)(解析版) 題型:解答題

(文)已知函數(shù),(a,b∈R)
(Ⅰ)當b=0時,若f(x)在[2,+∞)上單調遞增,求a的取值范圍;
(Ⅱ)求滿足下列條件的所有實數(shù)對(a,b):當a是整數(shù)時,存在x,使得f(x)是f(x)的最大值,g(x)是g(x)的最小值;
(Ⅲ)對滿足(Ⅱ)的條件的一個實數(shù)對(a,b),試構造一個定義在D={x|x>-2,且x≠2k-2,k∈N}上的函數(shù)h(x),使當x∈(-2,0)時,h(x)=f(x),當x∈D時,h(x)取得最大值的自變量的值構成以x為首項的等差數(shù)列.

查看答案和解析>>

同步練習冊答案