精英家教網(wǎng)在正方體ABCD-A1B1C1D1中,E為棱CC1的中點(diǎn)
(1)求證:D1B1⊥AE;
(2)求D1B1與平面ABE所成角θ的正弦值.
分析:(1)建立空間直角坐標(biāo)系,求出
D1B1
=(2,2,0),
AE
=(-2,2,1)
,利用向量的數(shù)量積公式求出它們的數(shù)量積為0,利用向量垂直的充要條件得到D1B1⊥AE;
(2)平面ABE的法向量,利用向量的數(shù)量積公式求出兩個(gè)向量的夾角余弦,其絕對(duì)值即為D1B1與平面ABE所成角θ的正弦值.
解答:解:(1)如圖建立空間直角坐標(biāo)系
設(shè)正方體的棱長(zhǎng)為2,則A(2,0,0),B(2,2,0),C(02,0),E(0,2,1),D1(0,0,2),B1(2,2,2)
所以
D1B1
=(2,2,0),
AE
=(-2,2,1)

D1B1
AE
=0

D1B1
AE

∴D1B1⊥AE
求出(2)設(shè)平面ABE的法向量
n
=(a,b,1)

AB
=(0,2,0), 
AE
=(-2,2,1)

2b=0
-2a+2b+1=0

解得a=
1
2
,b=0

n
=(
1
2
,0,1)

sinθ= |
D1B1
n
|
D1B1
||
n
|
|=
10
10
點(diǎn)評(píng):解決直線、平面間的位置關(guān)系、度量關(guān)系時(shí),常通過(guò)建立空間直角坐標(biāo)系,將立體幾何的問(wèn)題轉(zhuǎn)化為向量的數(shù)量積問(wèn)題來(lái)解決.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

16、在正方體ABCD-A′B′C′D′中,過(guò)對(duì)角線BD′的一個(gè)平面交AA′于E,交CC′于F,則
①四邊形BFD′E一定是平行四邊形;
②四邊形BFD′E有可能是正方形;
③四邊形BFD′E在底面ABCD內(nèi)的投影一定是正方形;
④平面BFD′E有可能垂直于平面BB′D.
以上結(jié)論正確的為
①③④
.(寫(xiě)出所有正確結(jié)論的編號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在正方體ABCD-A′B′C′D′中,E為D′C′的中點(diǎn),則二面角E-AB-C的大小為
45°
45°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在正方體ABCD-A′B′C′D′中,E,F(xiàn)分別是AB′,BC′的中點(diǎn). 
(1)若M為BB′的中點(diǎn),證明:平面EMF∥平面ABCD.
(2)求異面直線EF與AD′所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖在正方體ABCD-A  1B1C1D1中,O是底面ABCD的中心,B1H⊥D1O,H為垂足,則B1H與平面AD1C的位置關(guān)系是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在正方體ABCD-A′B′C′D′中,過(guò)對(duì)角線BD′的一個(gè)平面交棱AA′于E,交棱CC′于F,則:
①四邊形BFD′E一定是平行四邊形;
②四邊形BFD′E有可能是正方形;
③四邊形BFD′E有可能是菱形;
④四邊形BFD′E有可能垂直于平面BB′D.
其中所有正確結(jié)論的序號(hào)是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案