15.在等差數(shù)列{an}中,已知a3+a8>0,且S9<0,則S1、S2、…S9中最小的是( 。
A.S5B.S6C.S7D.S8

分析 設(shè)等差數(shù)列{an}的公差為d,由a3+a8>0,且S9<0,可得a5<0,a6>0.即可得出.

解答 解:設(shè)等差數(shù)列{an}的公差為d,∵a3+a8>0,且S9<0,
a5+a6>0,$9{a}_{1}+\frac{9×8}{2}$d<0,即a5<0.
∴a6>0.
∴d>0,
則S1、S2、…S9中最小的是S5
故選:A.

點(diǎn)評 本題考查了等差數(shù)列的通項(xiàng)公式與求和公式、數(shù)列的單調(diào)性,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知集合M={0,2},則M的真子集的個數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.一個三棱錐的三視圖如圖所示,則三棱錐的體積為( 。
A.$\frac{5}{3}$B.$\frac{10}{3}$C.$\frac{20}{3}$D.$\frac{25}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若函數(shù)f(x)的圖象和g(x)=ln(2x)的圖象關(guān)于直線x-y=0對稱,則f(x)的解析式為$\frac{1}{2}$ex

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.△ABC各角的對應(yīng)邊分別為a,b,c,滿足$\frac{a}{b+c}+\frac{a+c}≥1$,則角C的范圍是(  )
A.$(0,\frac{π}{3}]$B.$(0,\frac{π}{6}]$C.$[\frac{π}{3},π)$D.$[\frac{π}{6},π)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知等差數(shù)列{an}滿足a1+a2=10,a4-a3=2.
(Ⅰ)求{an}的通項(xiàng)公式;
(Ⅱ)設(shè)等比數(shù)列{bn}滿足b4=a3,b5=a7,問:b7與數(shù)列{an}的第幾項(xiàng)相等?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.?dāng)?shù)列4,a,9是等比數(shù)列是“a=±6”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系,兩種坐標(biāo)系中取相同的長度單位,已知曲線C1的參數(shù)方程為$\left\{\begin{array}{l}x=cosα\\ y=sinα\end{array}\right.$,(α為參數(shù),且α∈[0,π)),曲線C2的極坐標(biāo)方程為ρ=-2sinθ.
(1)求C1的極坐標(biāo)方程與C2的直角坐標(biāo)方程;
(2))若P是C1上任意一點(diǎn),過點(diǎn)P的直線l交C2于點(diǎn)M,N,求|PM|•|PN|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.函數(shù)f(x)=3sin(x+$\frac{π}{6}$)在x=θ時取得最大值,則tanθ等于( 。
A.-$\frac{\sqrt{3}}{3}$B.$\frac{\sqrt{3}}{3}$C.-$\sqrt{3}$D.$\sqrt{3}$

查看答案和解析>>

同步練習(xí)冊答案