11.在平面直角坐標(biāo)系中,點(diǎn)A(0,2)和點(diǎn)B(3,5)到直線l的距離都是3,則符合條件的直線l共有( 。l.
A.4B.3C.2D.1

分析 直線l是以A(0,2)為圓心3為半徑的圓和以B(3,5)為圓心3為半徑的圓的公切線,求出兩圓相交,由此能求出符合條件的直線l共有2條.

解答 解:直線l是以A(0,2)為圓心3為半徑的圓和以B(3,5)為圓心3為半徑的圓的公切線,
∵|AB|=$\sqrt{9+9}$=3$\sqrt{2}$<3+3=6,
∴兩圓相交,故兩圓的公切線有2條,
∴符合條件的直線l共有2條.
故選:C.

點(diǎn)評(píng) 本題考查滿足條件的直線條數(shù)的求法,考查直線與圓的位置關(guān)系,考查兩點(diǎn)間距離公式的求法及應(yīng)用,解答本題的關(guān)鍵是正確理解直線與圓的位置關(guān)系的合理運(yùn)用,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知向量$\overrightarrow{m}$=(-1,2),$\overrightarrow{n}$=(1,λ),若$\overrightarrow{m}$⊥$\overrightarrow{n}$,則$\overrightarrow{m}$+2$\overrightarrow{n}$與$\overrightarrow{m}$的夾角為( 。
A.$\frac{2π}{3}$B.$\frac{3π}{4}$C.$\frac{π}{3}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.若$\overrightarrow{AB}$$•\overrightarrow{AC}$=-1,|$\overrightarrow{AB}$|=2,|$\overrightarrow{AC}$|=1,則($\frac{1}{2}$$\overrightarrow{AB}$-$\overrightarrow{AC}$)•($\overrightarrow{AB}$+$\overrightarrow{AC}$)的值為(  )
A.$\frac{3}{8}$B.$\frac{3}{4}$C.$\frac{5}{4}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.若雙曲線E:$\frac{{x}^{2}}{{a}^{2}}$$-\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一個(gè)焦點(diǎn)為F(3,0),過(guò)F點(diǎn)的直線l與雙曲線E交于A,B兩點(diǎn),且AB的中點(diǎn)為P(-3,-6),則E的方程為( 。
A.$\frac{{x}^{2}}{5}$$-\frac{{y}^{2}}{4}$=1B.$\frac{{x}^{2}}{4}$$-\frac{{y}^{2}}{5}$=1C.$\frac{{x}^{2}}{6}$$-\frac{{y}^{2}}{3}$=1D.$\frac{{x}^{2}}{3}$$-\frac{{y}^{2}}{6}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.i為虛數(shù)單位,若(1+i)$\overline{z}$=(1-i)2,則|z|=$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.下列命題為真命題的個(gè)數(shù)是( 。
①e${\;}^{\frac{2}{e}}$>2;②ln2>$\frac{2}{3}$;③$\frac{lnπ}{π}$<$\frac{1}{e}$;④$\frac{ln2}{2}$<$\frac{lnπ}{π}$.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.若cos($\frac{π}{4}$+θ)cos($\frac{π}{4}$-θ)=$\frac{1}{4}$,求sin4θ+cos4θ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知$\overrightarrow{a}$=(x,1),$\overrightarrow$=(1,2),$\overrightarrow{c}$=(-1,5),若($\overrightarrow{a}$+2$\overrightarrow$)∥$\overrightarrow{c}$,則|$\overrightarrow{a}$|=$\sqrt{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.《九章算術(shù)》是我國(guó)古代內(nèi)容極為豐富的數(shù)學(xué)名著,書(shū)中有如下問(wèn)題:“今有女子善織,日益功,疾,初日織五尺,今一月織九匹三丈(1匹=40尺,一丈=10尺),問(wèn)日益幾何?”其意思為:“有一女子擅長(zhǎng)織布,每天比前一天更加用功,織布的速度也越來(lái)越快,從第二天起,每天比前一天多織相同量的布,第一天織5尺,一月織了九匹三丈,問(wèn)每天增加多少尺布?”若一個(gè)月按31天算,記該女子一個(gè)月中的第n天所織布的尺數(shù)為an,則$\frac{{{a_1}+{a_3}+…+{a_{29}}+{a_{31}}}}{{{a_2}+{a_4}+…+{a_{28}}+{a_{30}}}}$的值為( 。
A.$\frac{16}{5}$B.$\frac{16}{15}$C.$\frac{16}{29}$D.$\frac{16}{31}$

查看答案和解析>>

同步練習(xí)冊(cè)答案