3.在空間四邊形ABCD中,E,F(xiàn)分別是AB,AD的中點(diǎn)
(1)求證:EF∥平面BCD
(2)若AB=AD,BC=CD,求證:AC⊥BD.

分析 (1)利用三角形的中位線(xiàn)的性質(zhì)可得EF∥BD,利用線(xiàn)面平行的判定定理,即可得出結(jié)論.
(2)取BD的中點(diǎn)G,連接AG,CG,可得BD⊥AG,BD⊥CG,從而可證BD⊥平面AGC,即可證明BD⊥AC.

解答 證明:(1)∵空間四邊形ABCD中,E,F(xiàn)分別是AB,AD的中點(diǎn).
∴EF∥BD,
∵EF?平面BCD,BD?平面BCD,
∴EF∥平面BCD.
(2)如圖,取BD的中點(diǎn)G,連接AG,CG,
∵AB=AD,BC=CD,
∴BD⊥AG,BD⊥CG,
∵AG∩CG=G,
∴BD⊥平面AGC,又AC?平面AGC,
∴BD⊥AC.

點(diǎn)評(píng) 本題考查線(xiàn)面平行的判定定理,直線(xiàn)與平面垂直的性質(zhì),考查學(xué)生空間想象能力,推理論證能力,分析解決問(wèn)題的能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.如圖,橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左焦點(diǎn)為F,過(guò)點(diǎn)F的直線(xiàn)交橢圓于A,B兩點(diǎn),|AF|的最大值為M,|BF|的最小值為m,滿(mǎn)足$M•m=\frac{3}{4}{a^2}$.
(Ⅰ)若線(xiàn)段AB垂直于x軸時(shí),|AB|=$\frac{3}{2}$,求橢圓的方程;
(Ⅱ) 設(shè)線(xiàn)段AB的中點(diǎn)為G,AB的垂直平分線(xiàn)與x軸和y軸分別交于D,E兩點(diǎn),O是坐標(biāo)原點(diǎn),記△GFD的面積為S1,△OED的面積為S2,求$\frac{{2{S_1}{S_2}}}{{{S_1}^2+{S_2}^2}}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.不等式|x-5|+|x+1|<8的解集為( 。
A.(-∞,2)B.(-2,6)C.(6,+∞)D.(-1,5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.不等式$\frac{4}{x-2}>x-2$的解集是( 。
A.(-∞,0)∪(2,4)B.[0,2)∪[4,+∞)C.[2,4)D.(-∞,-2]∪(4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知定義在R上的函數(shù)f(x),g(x)滿(mǎn)足$\frac{f(x)}{g(x)}={a^x}$,且f′(x)g(x)<f(x)g′(x),$\frac{f(1)}{g(1)}+\frac{f(-1)}{g(-1)}=\frac{5}{2}$,若有窮數(shù)列$\left\{{\frac{f(n)}{g(n)}}\right\},n∈{N^*}$的前n項(xiàng)和為$\frac{255}{256}$,則n=8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知函數(shù)$f(x)={log_2}(x+\sqrt{{x^2}+1})+\frac{{5{e^x}+3}}{{{e^x}+1}}$,x∈[-k,k](k>0)的最大值和最小值分別為M和m,則M+m=8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.(Ⅰ)設(shè)函數(shù)f(x)=$\left\{{\begin{array}{l}{{{log}_{\frac{1}{2}}}x}&{x>0}\\{x+6}&{x≤0}\end{array}}$,計(jì)算f(f(-4))的值;
(Ⅱ)計(jì)算:log525+lg$\frac{1}{100}+ln\sqrt{e}+{2^{{{log}_2}1}}$;
(Ⅲ)計(jì)算:${(\frac{9}{16})^{0.5}}+{(-3)^{-1}}÷{0.75^{-2}}-{(2\frac{10}{27})^{-\;\frac{2}{3}}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.“x=1”是“x2-1=0”的( 。l件.
A.充分不必要B.必要不充分
C.充要D.既不充分也不必要

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.計(jì)算:
(1)${(2\frac{3}{5})^0}+{2^{-4}}×{(2\frac{1}{4})^{-\frac{3}{2}}}-{0.01^{0.5}}$;
(2)(lg2)2+lg2•lg50+lg25.

查看答案和解析>>

同步練習(xí)冊(cè)答案