tan75°
1-tan275°
=
-
3
6
-
3
6
分析:利用二倍角的正切公式,即可得到結(jié)論.
解答:解:
tan75°
1-tan275°
=
1
2
2tan75°
1-tan275°
=
1
2
tan150°
=
1
2
•(-
3
3
)
=-
3
6

故答案為:-
3
6
點評:本題考查二倍角的正切公式,考查學(xué)生的計算能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

求下列各式的值
(1)(cos
π
12
+sin
π
12
)(cos
π
12
-sin
π
12
)
=
 
;
(2)cos200°cos80°+cos110°cos10°=
 

(3)tan10°tan20°+tan20°tan60°+tan60°tan10°=
 
;
(4)cos
π
7
cos
7
cos
3
7
π
=
 
;
(5)sin20°sin40°sin80°=
 
;
(6)cos20°+cos100°+cos140°=
 
;
(7)(1+tan1°)(1+tan2°)(1+tan3°)…(1+tan44°)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于下列命題:
①函數(shù)y=tanx在第一象限是增函數(shù);
②函數(shù)y=cos2(
π
4
-x)
是偶函數(shù);
③函數(shù)y=4sin(2x-
π
3
)
的一個對稱中心是(
π
6
,0);
④cos(x+y)+cos(x-y)=2cosxcosy
⑤cos2α(1+tan2α)=1
寫出所有正確的命題的題號:
③④⑤
③④⑤

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知α、β≠kπ+
π
2
(k∈Z),且sinθ+cosθ=2sinα , sinθcosθ=sin2β
.求證:
1-tan2α
1+tan2α
=
1-tan2β
2(1+tan2β)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個命題:
(1)函數(shù)y=3sin
x
2
+4cos
x
2
的定義域為[0,2π],則值域為[-5,5];
(2)三角方程tan(5x+
9
)=
2
在[0,π]內(nèi)有5個解;
(3)對任意的α∈R,三角公式sin2α=
2tanα
1+tan2α
是一定成立的;
(4)函數(shù)y=cosx與y=arccosx(|x|≤1)互為反函數(shù).
其中正確的個數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

α∈(π,
3
2
π)
,化簡:
cosα
1+tan2α
+
sinα
1+cot2α
=
-1
-1

查看答案和解析>>

同步練習(xí)冊答案