如圖,直三棱柱ABC-A1B1C1中,AB=AC=1,AA1=2,∠B1A1C1=90°,D為BB1的中點,則異面直線C1D與A1C所成角的余弦值為________.
以A為原點建立空間直角坐標系,如圖A1(0,0,2),C(0,1,0),D(1,0,1),C1(0,1,2),

=(1,-1,-1),=(0,1,-2),||=,||=,
·=1,
cos〈,〉=
故異面直線C1D與A1C所成角的余弦值為.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,AB∥CD,AD⊥CD,且AB=AD=PD=1,CD=2,E為PC的中點.
(1)求證:BE∥平面PAD;
(2)求二面角E-BD-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在棱長為a的正方體ABCD-A1B1C1D1中,G為△BC1D的重心,

(1)求證:A1、G、C三點共線;
(2)求證:A1C⊥平面BC1D;
(3)求點C到平面BC1D的距離.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點.
(1)證明:PB∥平面AEC;
(2)設二面角D-AE-C為60°,AP=1,AD=,求三棱錐E-ACD的體積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在四棱錐E﹣ABCD中,矩形ABCD所在的平面與平面AEB垂直,且∠BAE=120°,AE=AB=4,AD=2,F(xiàn),G,H分別為BE,AE,BC的中點
(1)求證:DE∥平面FGH;
(2)若點P在直線GF上,,且二面角D﹣BP﹣A的大小為,求λ的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知四棱錐的底面是平行四邊形,,,
.若中點,為線段上的點,且
(1)求證:平面;
(2)求PC與平面PAD所成角的正弦值.

 

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

兩個相交平面a、b 都垂直于第三個平面g ,那么它們的交線a一定和第三個平面垂直.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知在長方體ABCD-A1B1C1D1中,底面是邊長為2的正方形,高為4,則點A1到截面AB1D1的距離是________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

△ABC的頂點分別為A(1,-1,2),B(5,-6,2),C(1,3,-1),則AC邊上的高BD等于(  )
A.5B.C.4D.2

查看答案和解析>>

同步練習冊答案