| 第1列 | 第2列 | 第3列 | … | 第n列 |
第1行 | a11 | a12 | a13 | … | a1n |
第2行 | a21 | a22 | a23 | … | a2n |
第3行 | a31 | a32 | a33 | … | a3n |
… | … | … | … | … | … |
第n行 | an1 | an2 | an3 | … | ann |
其中aik(1≤i≤n,1≤k≤n,且i,k∈N*)表示該數(shù)陣中位于第i行第k列的數(shù).已知該數(shù)陣第一行的數(shù)成等差數(shù)列,每一列的數(shù)成公比為2的等比數(shù)列,且a23=8,a34=20.
(1)求a11和aik;
(2)設(shè)An=a1n+a2(n-1)+a3(n-2)+…+an1,
證明當n為3的倍數(shù)時,(An+n)能被21整除.
(1)解:設(shè)第一行公差為d,則Aik=A1k×2i-1=[A11+(k-1)d]×2i-1.?
∵A23=8,A34=20,
∴解得A11=2,d=1.
∴A11=2,Aik=(k+1)×2i-1(1≤i≤n,1≤k≤n,n≥4,且i,k,n∈N*).
(2)證明:∵An=A1n+A2(n-1)+A3(n-2)+…+An1=(n+1)+?n×2+(n-1)×22+…+2×2n-1, ①
∴2An=(n+1)×2+n×22+(n-1)×23+…+3×2n-1+2×2n. ②
由②-①,得An=2+22+23+…+2n-1+2×2n-(n+1)=2n-2+2×2n-n-1=3×(2n-1)-n.?
∴An+n=3×(2n-1).
下面用數(shù)學歸納法證明:當n為3的倍數(shù)時,(An+n)能被21整除.?
設(shè)n=3m(m∈N*,且m≥2),?
則A3m+3m=3×(23m-1).?
(ⅰ)當m=2時,A3+3=3×(26-1)=189能被21整除,結(jié)論成立.?
(ⅱ)假設(shè)m=k(k∈N*,且k≥2)時,結(jié)論成立,即A3k+3k=3×(23k-1)能被21整除,則A3(k+1)+3(k+1)=3×[23(k+1)-1)=3×(23k×8-1]=8[3×(23k-1)]+21.由歸納假設(shè),3×(23k-1)能被21整除,?
∴A3(k+1)+3(k+1)能被21整除.這就是說,當m=k+1時,結(jié)論也成立.?
∴當n為3的倍數(shù)時,(An+n)能被21整除.
科目:高中數(shù)學 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
| 第1列 | 第2列 | 第3列 | … | 第n列 |
第1行 | a11 | a12 | a13 | … | a1n |
第2行 | a21 | a22 | a23 | … | a2n |
第3行 | a31 | a32 | a33 | … | a3n |
… | … | … | … | … | … |
第n行 | an1 | an2 | an3 | … | ann |
其中aik(1≤i≤n,1≤k≤n,且i,k∈N*)表示該數(shù)陣中位于第i行第k列的數(shù).已知該數(shù)陣第一行的數(shù)成等差數(shù)列,每一列的數(shù)成公比為2的等比數(shù)列,且a23=8,a34=20.
(1)求a11和aik;
(2)設(shè)An=a1n+a2(n-1)+a3(n-2)+…+an1,
證明當n為3的倍數(shù)時,(An+n)能被21整除.
查看答案和解析>>
科目:高中數(shù)學 來源:2010年江蘇省鹽城市高三1月學情調(diào)研數(shù)學試卷(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com