A. | $\frac{1}{4}$ | B. | -$\frac{1}{4}$ | C. | $\frac{\sqrt{15}}{4}$ | D. | -$\frac{\sqrt{15}}{4}$ |
分析 由已知及二倍角的正弦函數(shù)公式可求sinα=$\frac{1}{4}$,cosα<0,利用同角三角函數(shù)基本關系式即可計算得解.
解答 解:∵$\frac{π}{2}$<α<π,可得:cosα<0,
∴2sin2α=4sinαcosα=cosα,可得:sinα=$\frac{1}{4}$,
∴cosα=-$\sqrt{1-(\frac{1}{4})^{2}}$=-$\frac{\sqrt{15}}{4}$,
∴sin(α+$\frac{π}{2}$)=cosα=-$\frac{\sqrt{15}}{4}$.
故選:D.
點評 本題主要考查了二倍角的正弦函數(shù)公式,同角三角函數(shù)基本關系式在三角函數(shù)化簡求值中的應用,考查了計算能力和轉化思想,屬于基礎題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{3}{4}$ | C. | $\frac{2}{3}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | f(x)=-x(1-x) | B. | f(x)=x(1+x) | C. | f(x)=-x(1+x) | D. | f(x)=x(x-1) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 50 | B. | 70 | C. | 110 | D. | 120 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{2}{3}$ | B. | $\frac{\sqrt{5}}{3}$ | C. | $\frac{1}{3}$ | D. | $\frac{2\sqrt{2}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 充分非必要 | B. | 必要非充分 | ||
C. | 充要 | D. | 既非充分也非必要 |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com