(12分) 設(shè)函數(shù)(),.
(1) 將函數(shù)圖象向右平移一個單位即可得到函數(shù)的圖象,試寫出的解析式及值域;
(2) 關(guān)于的不等式的解集中的整數(shù)恰有3個,求實數(shù)的取值范圍;
(3) 對于函數(shù)與定義域上的任意實數(shù),若存在常數(shù),使得和都成立,則稱直線為函數(shù)與的“分界線”.設(shè),,試探究與是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.
(1),值域為
(2)解法一:不等式的解集中的整數(shù)恰有3個,
等價于恰有三個整數(shù)解,故,
令,由且,
所以函數(shù)的一個零點在區(qū)間,
則另一個零點一定在區(qū)間,
故解之得.
解法二:恰有三個整數(shù)解,故,即,
,
所以,又因為,
所以,解之得.
(3)設(shè),則.
所以當(dāng)時,;當(dāng)時,.
因此時,取得最小值,
則與的圖象在處有公共點.
設(shè)與存在 “分界線”,方程為,
即,
由在恒成立,則在恒成立 .
所以成立,
因此.
下面證明恒成立.
設(shè),則.
所以當(dāng)時,;當(dāng)時,.
因此時取得最大值,則成立.
故所求“分界線”方程為:.
【解析】略
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
1 |
x |
1 |
x |
1 |
x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
1 | ||
1+
|
A、M={x|x≠0},N={y|y≠0} |
B、M={x|x≠0},N={y|y∈R} |
C、M={x|x<0且x≠-1,或x>0},N={y|y<0或0<y<1或y>1} |
D、M={x|x<-1或-1<x<0或x>0},N={y|y≠0} |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com