拋物線y=2x2的焦點(diǎn)坐標(biāo)是( )
A.(,0)
B.(0,
C.(0,
D.(,0)
【答案】分析:把拋物線y=2x2化為標(biāo)準(zhǔn)方程,求出 p值,確定開口方向,從而得到焦點(diǎn)的坐標(biāo).
解答:解:拋物線y=2x2的標(biāo)準(zhǔn)方程為 ,
∴p=,拋物線開口向上,焦點(diǎn)在y軸的正半軸上,
故焦點(diǎn)坐標(biāo)為(0, ),
故選 B.
點(diǎn)評(píng):本題考查拋物線的標(biāo)準(zhǔn)方程,以及簡(jiǎn)單性質(zhì)的應(yīng)用.把拋物線y=2x2化為標(biāo)準(zhǔn)方程是解題的突破口.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列命題:
①已知橢圓
x2
16
+
y2
8
=1
的兩個(gè)焦點(diǎn)為F1,F(xiàn)2,則這個(gè)橢圓上存在六個(gè)不同的點(diǎn)M,使得△F1MF2為直角三角形;
②已知直線l過拋物線y=2x2的焦點(diǎn),且與這條拋物線交于A,B兩點(diǎn),則|AB|的最小值為2;
③若過雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)
的一個(gè)焦點(diǎn)作它的一條漸近線的垂線,垂足為M,O為坐標(biāo)原點(diǎn),則|OM|=a;
④已知⊙C1:x2+y2+2x=0,⊙C2:x2+y2+2y-1=0,則這兩個(gè)圓恰有2條公切線.
其中正確命題的序號(hào)是
 
.(把你認(rèn)為正確命題的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

拋物線y=2x2的焦點(diǎn)坐標(biāo)為( 。
A、(1,0)
B、(
1
4
,0)
C、(0,
1
4
D、(0,
1
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

拋物線y=2x2的焦點(diǎn)坐標(biāo)是( 。
A、(
1
8
,0)
B、(0,
1
8
C、(0,
1
2
D、(
1
2
,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

拋物線y=-2x2的焦點(diǎn)坐標(biāo)是( 。
A、(-
1
2
,0)
B、(-1,0)
C、(0,-
1
4
)
D、(0,-
1
8
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列命題:
①已知橢圓
x2
16
+
y2
8
=1兩焦點(diǎn)F1,F(xiàn)2,則橢圓上存在六個(gè)不同點(diǎn)M,使得△F1MF2為直角三角形;
②已知直線l過拋物線y=2x2的焦點(diǎn),且與這條拋物線交于A,B兩點(diǎn),則|AB|的最小值為2;
③若過雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)的一個(gè)焦點(diǎn)作它的一條漸近線的垂線,垂足為M,O為坐標(biāo)原點(diǎn),則|OM|=a;
④根據(jù)氣象記錄,知道荊門和襄陽(yáng)兩地一年中雨天所占的概率分別為20%和18%,兩地同時(shí)下雨的概率為12%,則荊門為雨天時(shí),襄陽(yáng)也為雨天的概率是60%.
其中正確命題的序號(hào)是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案