△ABC中,a=x,b=2,A=60°,若三角形有兩種,則x范圍為(  )
分析:由余弦定理a2=b2+c2-2bccosA的式子,列式并化簡得c2-2c+4-x2=0.將其看作關(guān)于c的方程,結(jié)合題意可得該方程有兩個(gè)不相等的正實(shí)數(shù)根,由此建立關(guān)于x的不等式組,解之可得實(shí)數(shù)x的范圍.
解答:解:∵△ABC中,a=x,b=2,A=60°,
∴由余弦定理a2=b2+c2-2bccosA,
可得x2=4+c2-4ccos60°,化簡得c2-2c+4-x2=0.
∵△ABC有兩解,∴將上述方程看作關(guān)于c的方程,該方程有兩個(gè)不相等的正實(shí)數(shù)根.
因此,可得△=(-2)2-4×1×(4-x2)>0且4-x2>0,
解之得
3
<x<2.
故選:D
點(diǎn)評:本題給出三角形的邊和角,在三角形有兩解的情況下求參數(shù)的取值范圍,著重考查了余弦定理、一元二次方程根的判別式和根與系數(shù)的關(guān)系等知識,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a=x,b=2,B=45°,若這樣的△ABC有兩個(gè),則實(shí)數(shù)x的取值范圍是( 。
A、(2,+∞)
B、(0,2)
C、(2,2
2
D、(
2
,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a=x,b=2,B=45°,若此三角形有兩解,則x的取值范圍是( 。
A、x>2
B、x<2
C、2<x<2
2
D、2<C<2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下面是一道選擇題的兩種解法,兩種解法看似都對,可結(jié)果并不一致,問題出在哪兒?
[題]在△ABC中,a=x,b=2,B=45°,若△ABC有兩解,則x的取值范圍是( 。
A.(2,+∞)B.(0,2)C.(2,  2
2
)
D.(
2
,  2)

[解法1]△ABC有兩解,asinB<b<a,xsin45°<2<x,即2<x<2
2
,故選C.
[解法2]
a
sinA
=
b
sinB
,sinA=
asinB
b
=
xsin45°
2
=
2
x
4

△ABC有兩解,bsinA<a<b,
2
x
4
<x<2
,即0<x<2,故選B.
你認(rèn)為
解法1
解法1
是正確的  (填“解法1”或“解法2”)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a=x,b=2,B=45°,若△ABC只有一解,則x的取值集合為
0<x≤2或x=2
2
0<x≤2或x=2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,下列說法中:①在△ABC中,a=x,b=2,B=45°,若該三角形有兩解,則x取值范圍是2<x<2
2
;②在△ABC中,若b=8,c=5,A=60°,則△ABC的外接圓半徑等于
14
3
3
;③在△ABC中,若c=5,
cosA
cosB
=
b
a
=
4
3
,則△ABC的內(nèi)切圓的半徑為2;④在△ABC中,若AB=4,AC=7,BC=9,則BC邊的中線AD=
7
2
;⑤設(shè)三角形ABC的BC邊上的高AD=BC,a、b、c分別表示角A、B、C對應(yīng)的三邊,則
b
c
+
c
b
的取值范圍是[2,
5
]
.其中正確說法的序號是
①④⑤
①④⑤
(注:把你認(rèn)為是正確的序號都填上).

查看答案和解析>>

同步練習(xí)冊答案