分析 欲求出切線方程,只須求出其斜率即可,故先利用導(dǎo)數(shù)求出在x=1處的導(dǎo)函數(shù)值,再結(jié)合導(dǎo)數(shù)的幾何意義即可求出切線的斜率.從而問題解決.
解答 解:∵f(x)=ex-e,
∴f′(x)=ex,
∴曲線y=f(x)在點(1,f(1))處的切線的斜率為:k=e,
∴曲線y=f(x)在點(1,f(1))處的切線的方程為:y=ex-e,
故答案為:y=ex-e.
點評 本小題主要考查直線的斜率、導(dǎo)數(shù)的幾何意義、利用導(dǎo)數(shù)研究曲線上某點切線方程等基礎(chǔ)知識,考查運算求解能力.屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ∅ | B. | R | C. | {x|x>1} | D. | {x|x>0} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 四條線段順次首尾連接,所得的圖形一定是平面圖形 | |
B. | 一條直線和兩條平行直線都相交,則三條直線共面 | |
C. | 兩兩平行的三條直線一定確定三個平面 | |
D. | 和兩條異面直線都相交的直線一定是異面直線 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 向左平移$\frac{π}{2}$ | B. | 向右平移$\frac{π}{2}$ | C. | 向左平移$\frac{π}{4}$ | D. | 向右平移$\frac{π}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com