設(shè){|an|}(n∈N*)是遞增的等比數(shù)列,對(duì)于給定的k(k∈N*),若
a
2
1
+
a
2
2
+…+
a
2
k
=
1
3
(4k-1)
,則數(shù)列{an}(n=1,2,3,…,k)的個(gè)數(shù)為( 。
A、2個(gè)
B、4個(gè)
C、2k個(gè)
D、無窮多個(gè)
分析:先根據(jù)
a
2
1
+
a
2
2
+…+
a
2
k
=
1
3
(4k-1)
求出數(shù)列的通項(xiàng),對(duì)于數(shù)列{an}而言,有k項(xiàng),而每一項(xiàng)有兩種可能,一是an=2k-1,二是an=-2k-1,從而得到所以數(shù)列的個(gè)數(shù)為2k
解答:解:∵
a
2
1
+
a
2
2
+…+
a
2
k
=
1
3
(4k-1)
…①,
a
2
1
+
a
2
2
+…+
a
2
k-1
=
1
3
(4k-1-1)
…②(k≥2)
①-②得所以ak2=4k-1(k≥2)
當(dāng)k=1時(shí),a1=1,滿足上式
∴ak2=4k-1
|ak|=2k-1
即ak=±2k-1
對(duì)于{an}而言,有k項(xiàng),而每一項(xiàng)有兩種可能,一是an=2k-1,二是an=-2k-1
所以數(shù)列的個(gè)數(shù)為2k,
故選C.
點(diǎn)評(píng):本題主要考查了數(shù)列的應(yīng)用,以及已知前n項(xiàng)和求數(shù)列的通項(xiàng),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)A(x1,y1)、B(x2,y2)是函數(shù)f(x)=
3
2
-
2
2x+
2
圖象上任意兩點(diǎn),且x1+x2=1.
(Ⅰ)求y1+y2的值;
(Ⅱ)若Tn=f(0)+f(
1
n
)+f(
2
n
)+…+f(
n
n
)
(其中n∈N*),求Tn;
(Ⅲ)在(Ⅱ)的條件下,設(shè)an=
2
Tn
(n∈N*),若不等式an+an+1+an+2+…+a2n-1
1
2
loga(1-2a)
對(duì)任意的正整數(shù)n恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)二次函數(shù)f(x)=x2+x,當(dāng)x∈[n,n+1](n∈N*)時(shí),f(x)的所有整數(shù)值的個(gè)數(shù)為g(n).
(1)試用n表示g(n);
(2)設(shè)an=
2n3+3n2
g(n)
(n∈N*),Sn=a1-a2+a3-a4+…+(-1)n-1an,求Sn;
(3)設(shè)bn=
g(n)
2n
,Tn=b1+b2+…+bn,若Tn<M(M∈Z),求M的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•盧灣區(qū)一模)已知函數(shù)f(x)=
x+1-tt-x
(t為常數(shù)).
(1)當(dāng)t=1時(shí),在圖中的直角坐標(biāo)系內(nèi)作出函數(shù)y=f(x)的大致圖象,并指出該函數(shù)所具備的基本性質(zhì)中的兩個(gè)(只需寫兩個(gè)).
(2)設(shè)an=f(n)(n∈N*),當(dāng)t>10,且t∉N*時(shí),試判斷數(shù)列{an}的單調(diào)性并由此寫出該數(shù)列中最大項(xiàng)和最小項(xiàng)(可用[t]來表示不超過t的最大整數(shù)).
(3)利用函數(shù)y=f(x)構(gòu)造一個(gè)數(shù)列{xn},方法如下:對(duì)于給定的定義域中的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1)(n≥2,n∈N*),…在上述構(gòu)造過程中,若xi(i∈N*)在定義域中,則構(gòu)造數(shù)列的過程繼續(xù)下去;若xi不在定義域中,則構(gòu)造數(shù)列的過程停止.若可用上述方法構(gòu)造出一個(gè)常數(shù)列{xn},求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•盧灣區(qū)一模)已知函數(shù)f(x)=
x+1-tt-x
(t為常數(shù)).
(1)當(dāng)t=1時(shí),在圖中的直角坐標(biāo)系內(nèi)作出函數(shù)y=f(x)的大致圖象,并指出該函數(shù)所具備的基本性質(zhì)中的兩個(gè)(只需寫兩個(gè)).
(2)設(shè)an=f(n)(n∈N*),當(dāng)t>10,且t∉N*時(shí),試判斷數(shù)列{an}的單調(diào)性并由此寫出該數(shù)列中最大項(xiàng)和最小項(xiàng)(可用[t]來表示不超過t的最大整數(shù)).
(3)利用函數(shù)y=f(x)構(gòu)造一個(gè)數(shù)列{xn},方法如下:對(duì)于給定的定義域中的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1)(n≥2,n∈N*),…在上述構(gòu)造過程中,若xi(i∈N*)在定義域中,則構(gòu)造數(shù)列的過程繼續(xù)下去;若xi不在定義域中,則構(gòu)造數(shù)列的過程停止.若取定義域中的任一值作為x1,都可以用上述方法構(gòu)造出一個(gè)無窮數(shù)列{xn},求實(shí)數(shù)t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•廣西一模)已知數(shù)列{an}滿足:a1=1,a2=2,且an+2=(2+cosnπ)(an-1)+3,n∈N*
(1)求通項(xiàng)公式an
(2)設(shè){an}的前n項(xiàng)和為Sn,問:是否存在正整數(shù)m、n,使得S2n=mS2n-1?若存在,請(qǐng)求出所有的符合條件的正整數(shù)對(duì)(m,n),若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案