橢圓為上頂點,為左焦點,為右頂點,且右頂點到直線的距離為,則該橢圓的離心率為(   )
A.B.C.D.
C

試題分析:由F(-c,0),B(0,b),可得直線FB:,利用點到直線的距離公式可得:A(a,0)到直線FB的距離=b,化簡解出即可.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

己知⊙O:x2+y2=6,P為⊙O上動點,過P作PM⊥x軸于M,N為PM上一點,且
(1)求點N的軌跡C的方程;
(2)若A(2,1),B(3,0),過B的直線與曲線C相交于D、E兩點,則是否為定值?若是,求出該值;若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知過點的直線交橢圓兩點,是橢圓的一個頂點,若線段的中點恰為點.
(1)求直線的方程;
(2)求的面積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

經(jīng)過橢圓的兩個焦點,且與該橢圓有四個不同交點,設是其中的一個交點,若的面積為,橢圓的長軸長為,則    (為半焦距).

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知橢圓C1=1與雙曲線C2=1共焦點,則橢圓C1的離心率e的取值范圍為(  )
A.B.C.(0,1)D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知橢圓=1的左焦點為F1,右頂點為A,上頂點為B.若∠F1BA=90°,則橢圓的離心率是(  )
A.  B.  C.  D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在直角坐標系中,已知△PAB的周長為8,且點A,B的坐標分別為(-1,0),(1,0).

(1)試求頂點P的軌跡C1的方程;
(2)若動點C(x1,y1)在軌跡C1上,試求動點Q的軌跡C2的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知中心在原點的橢圓與雙曲線有公共焦點,且左、右焦點分別為F1,F2,兩條曲線在第一象限的交點記為P,△PF1F2是以PF1為底邊的等腰三角形.若|PF1|=10,橢圓與雙曲線的離心率分別為e1,e2,則e1·e2的取值范圍是(  )
A.0,B.,C.,+∞D.,+∞

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

P0(x0,y0)在橢圓=1(ab>0)外,則過P0作橢圓的兩條切線的切點為P1P2,則切點弦P1P2所在直線方程是=1.那么對于雙曲線則有如下命題:若P0(x0y0)在雙曲線=1(a>0,b>0)外,則過P0作雙曲線的兩條切線的切點為P1,P2,則切點弦P1P2所在的直線方程是______.

查看答案和解析>>

同步練習冊答案