設(shè)函數(shù),,已知為函數(shù)的極值點
(1)求函數(shù)在上的單調(diào)區(qū)間,并說明理由.
(2)若曲線在處的切線斜率為-4,且方程有兩個不相等的負(fù)實根,求實數(shù)的取值范圍.
(1)的單調(diào)增區(qū)間為和,的單調(diào)減區(qū)間為
(2).
【解析】
試題分析:(1),為方程的兩根
又
由及知:
當(dāng)和時,,當(dāng)時,
的單調(diào)增區(qū)間為和,的單調(diào)減區(qū)間為
(2)由得
令得
當(dāng)在上變化時,的變化情況如下:
-3 |
- |
0 |
|||||
- |
0 |
+ |
+ |
0 |
- |
|
|
↘ |
極小值 |
↗ |
↗ |
極大值 |
↘ |
的大致圖象如圖
方程有兩個不等的負(fù)實根時,
.
考點:本題考查了導(dǎo)數(shù)的運用
點評:近幾年新課標(biāo)高考對于函數(shù)與導(dǎo)數(shù)這一綜合問題的命制,一般以有理函數(shù)與半超越(指數(shù)、對數(shù))函數(shù)的組合復(fù)合且含有參量的函數(shù)為背景載體,解題時要注意對數(shù)式對函數(shù)定義域的隱蔽,這類問題重點考查函數(shù)單調(diào)性、導(dǎo)數(shù)運算、不等式方程的求解等基本知識,注重數(shù)學(xué)思想(分類與整合、數(shù)與形的結(jié)合)方法(分析法、綜合法、反證法)的運用.把數(shù)學(xué)運算的“力量”與數(shù)學(xué)思維的“技巧”完美結(jié)合
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
3 |
2 |
1 |
1+3l |
1 |
1+3k |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com