設(shè)函數(shù),已知為函數(shù)的極值點

(1)求函數(shù)上的單調(diào)區(qū)間,并說明理由.

(2)若曲線處的切線斜率為-4,且方程有兩個不相等的負(fù)實根,求實數(shù)的取值范圍.

 

【答案】

(1)的單調(diào)增區(qū)間為,的單調(diào)減區(qū)間為

(2).

【解析】

試題分析:(1),為方程的兩根

 

知:

當(dāng)時,,當(dāng)時,

的單調(diào)增區(qū)間為,的單調(diào)減區(qū)間為

(2)由

  

當(dāng)上變化時,的變化情況如下:

-3

0

0

+

+

0

 

極小值

 

極大值

的大致圖象如圖

方程有兩個不等的負(fù)實根時,

.

考點:本題考查了導(dǎo)數(shù)的運用

點評:近幾年新課標(biāo)高考對于函數(shù)與導(dǎo)數(shù)這一綜合問題的命制,一般以有理函數(shù)與半超越(指數(shù)、對數(shù))函數(shù)的組合復(fù)合且含有參量的函數(shù)為背景載體,解題時要注意對數(shù)式對函數(shù)定義域的隱蔽,這類問題重點考查函數(shù)單調(diào)性、導(dǎo)數(shù)運算、不等式方程的求解等基本知識,注重數(shù)學(xué)思想(分類與整合、數(shù)與形的結(jié)合)方法(分析法、綜合法、反證法)的運用.把數(shù)學(xué)運算的“力量”與數(shù)學(xué)思維的“技巧”完美結(jié)合

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)I=R,已知f(x)=lg(x2-3x+2)的定義域為F,函數(shù)g(x)=lg(x-1)+lg(x-2)的定義域為G,那么G∪CIF 等于(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x) 是定義在R上的偶函數(shù),且對任意的x∈R恒有f(x+1)=-f(x),已知當(dāng)x∈[0,1]時,f(x)=3x.則
①2是f(x)的周期;        
②函數(shù)f(x)的最大值為1,最小值為0;
③函數(shù)f(x)在(2,3)上是增函數(shù);    
④直線x=2是函數(shù)f(x)圖象的一條對稱軸.
其中所有正確命題的序號是
①③④
①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=3x2+1,g(x)=2x,數(shù)列{an}滿足對于一切n∈N*有an>0,且f(an+1)-f(an)=g(an+1+
3
2
)
.?dāng)?shù)列{bn}滿足bn=logana,設(shè)k,l∈N*,bk=
1
1+3l
,bl=
1
1+3k

(1)求證:數(shù)列{an}為等比數(shù)列,并指出公比;
(2)若k+l=9,求數(shù)列{bn}的通項公式.
(3)若k+l=M0(M0為常數(shù)),求數(shù)列{an}從第幾項起,后面的項都滿足an>1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)y=f(x)(x∈R,且x≠0),對任意非零實數(shù)x1、x2滿足f(x1+x2)=f(x1x2),
(1)求f(1)+f(-1)的值;  
(2)判斷函數(shù)y=f(x)的奇偶性;
(3)已知y=f(x)在(0,+∞)上為增函數(shù)且f(4)=1,解不等式f(3x+1)+f(2x-6)≤3.

查看答案和解析>>

同步練習(xí)冊答案