【題目】已知的兩個(gè)頂點(diǎn)的坐標(biāo)分別為,,且所在直線的斜率之積等于,記頂點(diǎn)的軌跡為.

Ⅰ)求頂點(diǎn)的軌跡的方程;

Ⅱ)若直線與曲線交于兩點(diǎn),點(diǎn)在曲線上,且的重心(為坐標(biāo)原點(diǎn)),求證:的面積為定值,并求出該定值.

【答案】(Ⅰ)Ⅱ)證明見解析,定值為.

【解析】

(Ⅰ)設(shè),根據(jù)題意列方程即可求解.

(Ⅱ)設(shè),,由的重心,可得,從而,,將直線與橢圓方程聯(lián)立整理利用韋達(dá)定理求出點(diǎn)坐標(biāo),代入橢圓方程可得,再利用弦長(zhǎng)公式以及三角形的面積公式即可求解.

(Ⅰ)設(shè),

因?yàn)辄c(diǎn)的坐標(biāo)為,所以直線的斜率為

同理,直線的斜率為

由題設(shè)條件可得,.

化簡(jiǎn)整理得,頂點(diǎn)的軌跡的方程為:.

Ⅱ)設(shè),,

因?yàn)?/span>的重心,所以,

所以,,

,,

,,,

又點(diǎn)在橢圓上,所以,

,

因?yàn)?/span>的重心,所以倍,

,

原點(diǎn)到直線的距離為,

.

所以,

所以,的面積為定值,該定值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,分別為雙曲線的左、右焦點(diǎn),點(diǎn)P是以為直徑的圓與C在第一象限內(nèi)的交點(diǎn),若線段的中點(diǎn)QC的漸近線上,則C的兩條漸近線方程為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

(1)為曲線上的動(dòng)點(diǎn),點(diǎn)在線段上,且滿足,求點(diǎn)的軌跡的直角坐標(biāo)方程;

(2)設(shè)點(diǎn)的極坐標(biāo)為,點(diǎn)在曲線上,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,以為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,已知曲線的參數(shù)方程為為參數(shù),),曲線的極坐標(biāo)方程為:.且兩曲線交于兩點(diǎn).

1)求曲線的直角坐標(biāo)方程;

2)設(shè),若成等比數(shù)列,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓,點(diǎn),是圓上一動(dòng)點(diǎn),點(diǎn)在線段上,點(diǎn)在半徑上,且滿足.

(1)當(dāng)在圓上運(yùn)動(dòng)時(shí),求點(diǎn)的軌跡的方程;

(2)設(shè)過(guò)點(diǎn)的直線與軌跡交于點(diǎn)不在軸上),垂直于的直線交于點(diǎn),與軸交于點(diǎn),若,求點(diǎn)橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在橢圓上任取一點(diǎn)不為長(zhǎng)軸端點(diǎn)),連結(jié),并延長(zhǎng)與橢圓分別交于點(diǎn)兩點(diǎn),已知的周長(zhǎng)為8,面積的最大值為.

1)求橢圓的方程;

2)設(shè)坐標(biāo)原點(diǎn)為,當(dāng)不是橢圓的頂點(diǎn)時(shí),直線和直線的斜率之積是否為定值?若是定值,請(qǐng)求出這個(gè)定值;若不是定值,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形中,沿對(duì)角線折起,使之間的距離為分別為線段上的動(dòng)點(diǎn)

1)求線段長(zhǎng)度的最小值;

2)當(dāng)線段長(zhǎng)度最小時(shí),求直線與平面所成角的正弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),在以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為

1)若直線與曲線至多只有一個(gè)公共點(diǎn),求實(shí)數(shù)的取值范圍;

2)若直線與曲線相交于,兩點(diǎn),且的中點(diǎn)為,求點(diǎn)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),在以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,點(diǎn)的極坐標(biāo)為,直線的極坐標(biāo)方程為

(1)求直線的直角坐標(biāo)方程與曲線的普通方程;

(2)若是曲線上的動(dòng)點(diǎn),為線段的中點(diǎn),求點(diǎn)到直線的距離的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案