(本題滿分10分)已知函數(shù)
,
,其中
,設(shè)
.
(Ⅰ) 判斷
的奇偶性,并說明理由;
(Ⅱ)當(dāng)
時,判斷并證明函數(shù)
的單調(diào)性;
(Ⅲ) 若
,且對于區(qū)間[3,4]上的每一個x的值,不等式
恒成立,求實數(shù)
的取值范圍.
解:(1)
,
所以h(x)為奇函數(shù).
(2)因為
記
u(
x)=1+
,
所以u
又因為
函數(shù)
為減函數(shù),所以
在
上為增函數(shù).
(3)由
,得
,
設(shè)
.
由(2)中的證明及函數(shù)單調(diào)性的判定方法,易證明
在[3,4]上為增函數(shù), 此處從略 .
那么要使
>
m對
x∈[3,4]恒成立,
只需
m<
.
所以
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
設(shè)函數(shù)
的定義域為
,若存在非零實數(shù)
使得對于任意
,有
,則稱
為
上的“
調(diào)函數(shù)”.如果定義域是
的函數(shù)
為
上的“
調(diào)函數(shù)”,那么實數(shù)
的取值范圍是___
▲ .
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
計算下列各式:(本題滿分10分)
(1)(本小題滿分5分)
;
(2)(本小題題滿分5分)
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
若不等式
對于任意正整數(shù)n恒成立,則實數(shù)a的取值范圍是( )
A.a(chǎn)>1 | B. | C.a(chǎn)>1或 | D.R |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
若函數(shù)
,若
,則實數(shù)
的取值范圍是
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
若函數(shù)
在區(qū)間
內(nèi)有零點(diǎn),則實數(shù)a的取值范圍是( )
查看答案和解析>>