分析 (1)由f(x+2)=-f(x)可推知f(x+4)=f(x)得證.
(2)依題意求出f(x)在[-1,3)上的解析式,進(jìn)而求出f(x)=-$\frac{1}{2}$時(shí)x的值.再根據(jù)函數(shù)的周期性求出在[0,2014]上的所有x的個(gè)數(shù).
解答 解:(1)證明:∵f(x+2)=-f(x)
∴f(x+4)=f(x+2+2)=-f(x+2)=f(x)
∴f(x)是以4為周期的函數(shù).
(2)當(dāng)0≤x≤1時(shí),f(x)=$\frac{1}{2}$x,
設(shè)-1≤x≤0,則0≤-x≤1,
∴f(-x)=(-x)=-x.
∵f(x)是奇函數(shù),
∴f(-x)=-f(x),
∴-f(x)=-$\frac{1}{2}$x,即f(x)=$\frac{1}{2}$x.
故f(x)=$\frac{1}{2}$x(-1≤x≤1)
又設(shè)1<x<3,則-1<x-2<1,
∴f(x-2)=$\frac{1}{2}$(x-2),
又∵f(x-2)=-f(2-x)=-f[(-x)+2]=-[-f(-x)]=-f(x),
∴-f(x)=$\frac{1}{2}$(x-2),∴f(x)=-$\frac{1}{2}$(x-2)(1<x<3).
∴f(x)=$\left\{\begin{array}{l}{\frac{1}{2}x,-1≤x≤1}\\{-\frac{1}{2}(x-2),1<x<3}\end{array}\right.$,
由f(x)=-$\frac{1}{2}$,解得x=-1.
∵f(x)是以4為周期的周期函數(shù).故f(x)=-$\frac{1}{2}$的所有x=4n-1(n∈Z).令0≤4n-1≤2014,則$\frac{1}{4}$≤n≤503,
又∵n∈Z,∴1≤n≤503(n∈Z),
∴在[0,2014]上共有503個(gè)x使f(x)=-$\frac{1}{2}$.
點(diǎn)評(píng) 本題主要考查了函數(shù)的周期性.在解題的時(shí)候,要注意函數(shù)在不同區(qū)間上不同的解析式,這是容易出錯(cuò)的地方.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -2 | B. | 0 | C. | 2 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a為正相關(guān),b為負(fù)相關(guān),c為不相關(guān) | B. | a為負(fù)相關(guān),b為不相關(guān),c為正相關(guān) | ||
C. | a為負(fù)相關(guān),b為正相關(guān),c為不相關(guān) | D. | a為正相關(guān),b為不相關(guān),c為負(fù)相關(guān) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2014}{2015}$ | B. | $\frac{2015}{2016}$ | C. | $\frac{2016}{2017}$ | D. | $\frac{2017}{2018}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{3}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{6}$ | D. | $\frac{π}{8}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 主視圖和左視圖是三角形,俯視圖是圓 | |
B. | 主視圖和左視圖是三角形,俯視圖是圓和圓心 | |
C. | 主視圖是圓和圓心,俯視圖和左視圖是三角形 | |
D. | 主視圖和俯視圖是三角形,左視圖是圓和圓心 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com