如圖,已知圓與圓外切于點,直線是兩圓的外公切線,分別與兩圓相切于兩點,是圓的直徑,過作圓的切線,切點為.
(Ⅰ)求證:三點共線;
(Ⅱ)求證:.
證明見解析
【解析】
試題分析:(I)連接,由于是圓的直徑,可得.作圓與圓 的內(nèi)公切線交與點.利用切線的性質(zhì)可得: ,再利用三角形的內(nèi)角和定理可得,進而證明三點共線.
(II)由切線的性質(zhì)可得,利用射影定理可得.再利用切割線定理可得,即可證明.
試題解析:(Ⅰ)連結(jié)PC,PA,PB,BO2,
是圓O1的直徑 2分
連結(jié)O1O2必過點P
是兩圓的外公切線,為切點
由于
又因為 三點共線 5分
(溫馨提示:本題還可以利用作出內(nèi)公切線等方法證明出結(jié)論,請判卷老師酌情給分。
(Ⅱ)CD切圓O2于點D 7分
在中,,又
故 10分
考點:1、兩圓的公切線的性質(zhì);2、射影定理和切割線定理.
科目:高中數(shù)學(xué) 來源: 題型:
9 |
4 |
EC |
AC |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年遼寧沈陽市高三教學(xué)質(zhì)量監(jiān)測(一)文科數(shù)學(xué)試卷(解析版) 題型:解答題
如圖,已知圓與圓外切于點,直線是兩圓的外公切線,分別與兩圓相切于兩點,是圓的直徑,過作圓的切線,切點為.
(Ⅰ)求證:三點共線;
(Ⅱ)求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:河南省同步題 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012年河南省新鄉(xiāng)、許昌、平頂山高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com