求證:x
1
3
+y
1
3
=1為軸對稱圖形.
考點:幾何中的變換:對稱、平移、旋轉(zhuǎn)
專題:證明題,直線與圓
分析:在方程表示的圖形上任取一點P(m,n),則m
1
3
+n
1
3
=1,則有點Q(n,m)也在方程表示的圖形上.求出PQ的中垂線方程,即可得證.
解答: 證明:由于x
1
3
+y
1
3
=1,則x>0,y>0,
在方程表示的圖形上任取一點P(m,n),
m
1
3
+n
1
3
=1,
則有點Q(n,m)也在方程表示的圖形上.
由于PQ的中點M為(
m+n
2
,
m+n
2
),
直線PQ的斜率為
n-m
m-n
=-1,
則有直線PQ的中垂線方程為:y-
m+n
2
=x-
m+n
2
,
即P,Q關(guān)于直線y=x對稱,
由于P為任意的點,則P關(guān)于直線y=x對稱的點都在方程表示的圖形上.
x
1
3
+y
1
3
=1為軸對稱圖形.
點評:本題考查圖形的對稱性,考查點關(guān)于直線對稱的特點,考查運算能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)滿足條件:f(-1)=f(2)=0,f(3)=4.
(1)求函數(shù)f(x)的解析式;
(2)若f(x)>m對任意x∈R都成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合U=R,M={x|x>2011},N={x|0<x<1},則下列關(guān)系中正確的是(  )
A、M∪(∁UN)=R
B、M∩N={x|0<x<1}
C、N⊆∁UM
D、M∩N≠∅

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點A(1,1),B(-1,0),C(0,1),求點D(x,y),使
AB
=
CD

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
2
5
5
,且A(0,1)是橢圓C的頂點.
(1)求橢圓C的方程;
(2)過點A作斜率為1的直線l,設(shè)以橢圓C的右焦點F為拋物線E:y2=2px(p>0)的焦點,若點M為拋物線E上任意一點,求點M到直線l距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知過點 M(
p
2
,0)的直線 l與拋物線 y2=2px(p>0)交于A,B兩點,且 
OA
OB
=-3,其中O為坐標原點.
(1)求p的值;
(2)若圓x2+y2-2x=0與直線l相交于以C,D(A,C兩點均在第一象銀),且線段AC,CD,DB長構(gòu)成等差數(shù)列,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知過點M(
p
2
,0)的直線l與拋物線y2=2px(p>0)交于A,B兩點,且
OA
OB
=-3,其中O為坐標原點.
(1)求p的值;
(2)當|AM|+4|BM|最小時,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標系xOy中,橢圓E的中心為原點,焦點F1,F(xiàn)2在y軸上,離心率為
3
3
.過F1的直線l交E于A,B兩點,且△ABF2的周長為4
3

(1)求橢圓E的方程;
(2)過圓O:x2+y2=5上任意一點P作橢圓E的兩條切線,若切線都存在斜率,求證兩切線斜率之積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計算下列定積分:
(1)
3
1
1
x
dx;
(2)
2
0
e
x
2
dx;
(3)
e+1
2
1
x-1
dx;
(4)
π
2
0
cos2x
cosx+sinx
dx.

查看答案和解析>>

同步練習(xí)冊答案