數(shù)列{an}對?n∈N+都有an+2=an+1-an成立.a(chǎn)1=1,a2=2,則a2012=( 。
分析:由題中的遞推公式可以求出數(shù)列的各項,通過歸納、猜想,得出正確結(jié)果.
解答:解:在數(shù)列an中,a1=1,a2=2,an+2=an+1-an;
分析可得:a3=a2-a1=2-1=1,a4=a3-a2=1-2=-1,
a5=a4-a3=-1-1=-2,a6=a5-a4=-2+1=-1,
a7=a6-a5=-1+2=1,a8=a7-a6=1-(-1)=2,…
由以上知:數(shù)列每六項后會出現(xiàn)相同的循環(huán),
所以a2012=a2=2.
故選C;
點評:本題地考查數(shù)列的遞推公式的應(yīng)用,是基礎(chǔ)題.解題時要認(rèn)真審題,仔細(xì)解答,注意遞推思想的合理運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知:函數(shù)f(x)=
2x+3
3x
,數(shù)列{an}對n≥2,n∈N總有an=f(
1
an-1
),a1=1

(1)求{an}的通項公式.
(2)求和:Sn=a1a2-a2a3+a3a4-a4a5+…+(-1)n-1anan+1
(3)若數(shù)列{bn}滿足:①{bn}為{
1
an
}
的子數(shù)列(即{bn}中的每一項都是{
1
an
}
的項,且按在{
1
an
}
中的順序排列)②{bn}為無窮等比數(shù)列,它的各項和為
1
2
.這樣的數(shù)列是否存在?若存在,求出所有符合條件的數(shù)列{bn},寫出它的通項公式,并證明你的結(jié)論;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•奉賢區(qū)一模)已知:函數(shù)f(x)=
x
ax+b
(a,b∈R,ab≠0)
,f(2)=
2
3
,f(x)=x
有唯一的根.
(1)求a,b的值;
(2)數(shù)列{an}對n≥2,n∈N總有an=f(an-1),a1=1;求出數(shù)列{an}的通項公式.
(3)是否存在這樣的數(shù)列{bn}滿足:{bn}為{an}的子數(shù)列(即{bn}中的每一項都是{an}的項)且{bn}為無窮等比數(shù)列,它的各項和為
1
2
.若存在,找出所有符合條件的數(shù)列{bn},寫出它的通項公式,并說明理由;若不存在,也需說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•奉賢區(qū)一模)已知:函數(shù)f(x)=
x
ax+b
(a,b∈R,ab≠0)
,f(2)=
2
3
,f(x)=x
有唯一的根.
(1)求a,b的值;
(2)數(shù)列{an}對n≥2,n∈N總有an=f(an-1),a1=1;求證{
1
an
}
為等差數(shù)列,并求出{an}的通項公式.
(3)是否存在這樣的數(shù)列{bn}滿足:{bn}為{an}的子數(shù)列(即{bn}中的每一項都是{an}的項)且{bn}為無窮等比數(shù)列,它的各項和為
1
2
.若存在,找出一個符合條件的數(shù)列{bn},寫出它的通項公式;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知:函數(shù)數(shù)學(xué)公式,數(shù)列{an}對n≥2,n∈N總有數(shù)學(xué)公式;
(1)求{an}的通項公式.
(2)求和:Sn=a1a2-a2a3+a3a4-a4a5+…+(-1)n-1anan+1
(3)若數(shù)列{bn}滿足:①{bn}為數(shù)學(xué)公式的子數(shù)列(即{bn}中的每一項都是數(shù)學(xué)公式的項,且按在數(shù)學(xué)公式中的順序排列)②{bn}為無窮等比數(shù)列,它的各項和為數(shù)學(xué)公式.這樣的數(shù)列是否存在?若存在,求出所有符合條件的數(shù)列{bn},寫出它的通項公式,并證明你的結(jié)論;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案