(13分,理科做)已知函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052120461776561595/SYS201205212048004843164869_ST.files/image002.png">,且同時(shí)滿足:①;②恒成立;③若,則有.
(1)試求函數(shù)的最大值和最小值;
(2)試比較與的大小N);
(3)某人發(fā)現(xiàn):當(dāng)x=(nÎN)時(shí),有f(x)<2x+2.由此他提出猜想:對(duì)一切xÎ(0,1,都有,請(qǐng)你判斷此猜想是否正確,并說(shuō)明理由.
(理)解: (1)設(shè)0≤x1<x2≤1,則必存在實(shí)數(shù)tÎ(0,1),使得x2=x1+t,
由條件③得,f(x2)=f(x1+t)³f(x1)+f(t)-2,
∴f(x2)-f(x1)³f(t)-2,
由條件②得, f(x2)-f(x1)³0,
故當(dāng)0≤x≤1時(shí),有f(0)≤f(x)≤f(1).
又在條件③中,令x1=0,x2=1,得f(1)³f(1)+f(0)-2,即f(0)≤2,∴f(0)=2,
故函數(shù)f(x)的最大值為3,最小值為2.
(2)解:在條件③中,令x1=x2=,得f()³2f()-2,即f()-2≤[f()-2],
故當(dāng)nÎN*時(shí),有f()-2≤[f()-2]≤[f()-2]≤···≤[f()-2]=,
即f()≤+2.
又f()=f(1)=3≤2+,所以對(duì)一切nÎN,都有f()≤+2.
(3)對(duì)一切xÎ(0,1,都有.對(duì)任意滿足xÎ(0,1,總存在n(nÎN),使得
<x≤, 根據(jù)(1)(2)結(jié)論,可知:f(x)≤f()≤+2,
且2x+2>2´+2=+2,故有.
綜上所述,對(duì)任意xÎ(0,1,恒成立.
【解析】略
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本小題滿分13分)
已知正方體ABCD-A'B'C'D'的棱長(zhǎng)為1,點(diǎn)M是棱AA'的中點(diǎn),點(diǎn)O是對(duì)角線BD'的中點(diǎn).
(Ⅰ)求證:OM為異面直線AA'和BD'的公垂線;
(Ⅱ)求二面角M-BC'-B'的大小;
(Ⅲ)求三棱錐M-OBC的體積(理科做,文科不做)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本小題滿分13分)
已知正方體ABCD-A'B'C'D'的棱長(zhǎng)為1,點(diǎn)M是棱AA'的中點(diǎn),點(diǎn)O是對(duì)角線BD'的中點(diǎn).
(Ⅰ)求證:OM為異面直線AA'和BD'的公垂線;
(Ⅱ)求二面角M-BC'-B'的大;
(Ⅲ)求三棱錐M-OBC的體積(理科做,文科不做)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com