已知雙曲線x2-
y2
k
=1
的離心率為
2
,則實數(shù)k的值是
 
分析:根據(jù)題意,算出a=1、c=
1+k
,利用離心率的公式建立關于k的等式,解之即可得出實數(shù)k的值.
解答:解:∵雙曲線x2-
y2
k
=1
中,a2=1且b2=k,
∴c=
a2+b2
=
1+k

又∵雙曲線的離心率為
2
,
e=
c
a
=
1+k
1
=
2
,
解得k=1.
故答案為:1
點評:本題給出含有參數(shù)k的雙曲線方程,在已知離心率的情況下求k的值.著重考查了雙曲線的標準方程與簡單幾何性質等知識,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

3、已知雙曲線x2-y2+1=0與拋物線y2=(k-1)x至多有兩個公共點,則k的取值范圍是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線x2-y2=2的左、右焦點分別為F1,F(xiàn)2,過點F2的動直線與雙曲線相交于A,B兩點.若動點M滿足
F1M
=
F1A
+
F1B
+
F1O
(其中O為坐標原點),求點M的軌跡方程;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線x2-y2=a2(a>0)的左、右頂點分別為A、B,雙曲線在第一象限的圖象上有一點P,∠PAB=α,∠PBA=β,∠APB=γ,則( 。
A、tanα+tanβ+tanγ=0B、tanα+tanβ-tanγ=0C、tanα+tanβ+2tanγ=0D、tanα+tanβ-2tanγ=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線x2-y2=λ與橢圓
x2
16
+
y2
64
=1
有共同的焦點,則λ的值為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•臺州一模)已知雙曲線x2-y2=4a(a∈R,a≠0)的右焦點是橢圓
x2
16
+
y2
9
=1
的一個頂點,則a=
2
2

查看答案和解析>>

同步練習冊答案