已知函數(shù)
(1)當(dāng)a=2時(shí),求函數(shù)y=f(x)的圖象在x=0處的切線方程;
(2)判斷函數(shù)f(x)的單調(diào)性;
(3)求證:
(1)  ;(2) 參考解析;(3)參考解析

試題分析:(1)已知函數(shù)是一個(gè) 含對(duì)數(shù)與分式,以及復(fù)合函數(shù),需要正確地對(duì)函數(shù)求導(dǎo),因?yàn)楹瘮?shù)在x=0處的切線方程,所以將x=0代入導(dǎo)函數(shù),即可求出切線的斜率.再根據(jù)橫坐標(biāo)為0,計(jì)算出縱坐標(biāo),根據(jù)點(diǎn)斜式即可寫出切線方程.
(2)需要判斷函數(shù)的單調(diào)性,要對(duì)函數(shù)求導(dǎo),判斷導(dǎo)函數(shù)的值的正負(fù),所以要根據(jù)參數(shù)的情況分類討論后作出判定.
(3)解法(一)令為特殊值,通過(guò)函數(shù)的單調(diào)性得到一個(gè)不等式成立,再將x轉(zhuǎn)化為數(shù)列中的n的相關(guān)的值,再利用一個(gè)不等式,從而得到結(jié)論.解法(二)根據(jù)結(jié)論構(gòu)造函數(shù),通過(guò)函數(shù)的最值證明恒成立,再將x轉(zhuǎn)化為n的表達(dá)式即可.
試題解析:(1)當(dāng)時(shí),,
,
,所以所求的切線的斜率為3.又∵,所以切點(diǎn)為. 故所求的切線方程為:.
(2)∵,
. ①當(dāng)時(shí),∵,∴; 7分
②當(dāng)時(shí),
,得;由,得; 綜上,當(dāng)時(shí),函數(shù)單調(diào)遞增;
當(dāng)時(shí),函數(shù)單調(diào)遞減,在上單調(diào)遞增.
(3)方法一:由(2)可知,當(dāng)時(shí),上單調(diào)遞增. ∴ 當(dāng)時(shí),,即. 令),則. 另一方面,∵,即,
∴ . ∴ ). 方法二:構(gòu)造函數(shù), ∴, ∴當(dāng)時(shí),
∴函數(shù)單調(diào)遞增. ∴函數(shù) ,即
,即
),則有
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)
(1)當(dāng)時(shí),求的最小值;
(2)在區(qū)間(1,2)內(nèi)任取兩個(gè)實(shí)數(shù)p,q,且p≠q,若不等式>1恒成立,求實(shí)數(shù)a的取值范圍;
(3)求證:(其中)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù).
(1)求函數(shù)的極值;
(2)定義:若函數(shù)在區(qū)間上的取值范圍為,則稱區(qū)間為函數(shù)的“域同區(qū)間”.試問(wèn)函數(shù)上是否存在“域同區(qū)間”?若存在,求出所有符合條件的“域同區(qū)間”;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知a>0,函數(shù)f(x)=ax2-ln x.
(1)求f(x)的單調(diào)區(qū)間;
(2)當(dāng)a=時(shí),證明:方程f(x)=f 在區(qū)間(2,+∞)上有唯一解.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

記函數(shù)的導(dǎo)函數(shù)為,則 的值為     

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若函數(shù)f(x)=ax4+bx2+c滿足f′(1)=2,則f′(-1)等于(  )
A.-1B.- 2C.2D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

甲、乙二人平時(shí)跑步路程與時(shí)間的關(guān)系以及百米賽跑路程和時(shí)間的關(guān)
系分別如圖①、②所示.問(wèn):
 
(1)甲、乙二人平時(shí)跑步哪一個(gè)跑得快?
(2)甲、乙二人百米賽跑,快到終點(diǎn)時(shí),誰(shuí)跑得快(設(shè)Δss的增量)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)函數(shù)f(x)=x3ax2axg(x)=2x2+4xc.
(1)試問(wèn)函數(shù)f(x)能否在x=-1時(shí)取得極值?說(shuō)明理由;
(2)若a=-1,當(dāng)x∈[-3,4]時(shí),函數(shù)f(x)與g(x)的圖象有兩個(gè)公共點(diǎn),求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)f(x)=ax3+3x2-6ax-11,g(x)=3x2+6x+12和直線m:y=kx+9,且f′(-1)=0.
(1)求a的值.
(2)是否存在k的值,使直線m既是曲線y=f(x)的切線,又是曲線y=g(x)的切線?如果存在,求出k的值;如果不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案