A. | 6 | B. | -6 | C. | 8 | D. | -8 |
分析 由已知解得l2與l3的交點坐標,由已知可得:2m+n=1,又mn>0,再利用“乘1法”和基本不等式的性質(zhì)即可得出.
解答 解:∵由$\left\{\begin{array}{l}{x+y-1=0}\\{3x-y-7=0}\end{array}\right.$,解得:$\left\{\begin{array}{l}{x=2}\\{y=-1}\end{array}\right.$,
即l2與l3的交點坐標為:(2,-1),
又∵直線l1:mx+y+n=0過點(2,-1),
∴2m-1+n=0,可得:2m+n=1,
又∵mn>0.
∴$\frac{1}{m}$+$\frac{2}{n}$=(2m+n)($\frac{1}{m}$+$\frac{2}{n}$)=4+$\frac{4m}{n}$+$\frac{n}{m}$≥4+2$\sqrt{\frac{4m}{n}•\frac{n}{m}}$=8,
當且僅當2m=n=$\frac{1}{2}$時取等號.
故選:C.
點評 本題主要考查了“乘1法”和基本不等式的性質(zhì),考查了轉化思想,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | y=|x-1| | B. | y=x${\;}^{\frac{1}{2}}$ | C. | y=$\frac{1}{x}$ | D. | y=2x2-x+3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 恒為負值 | B. | 等于0 | C. | 恒為正值 | D. | 不大于0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | b≤-2 | B. | b≤-1 | C. | b=-1 | D. | b=-2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com