某會(huì)議室用5盞燈照明,每盞燈各使用燈泡一只,且型號(hào)相同.假定每盞燈能否正常照明只與燈泡的壽命有關(guān),該型號(hào)的燈泡壽命為1年以上的概率為p1,壽命為2年以上的概率為p2.從使用之日起每滿1年進(jìn)行一次燈泡更換工作,只更換已壞的燈泡,平時(shí)不換.

(1)在第一次燈泡更換工作中,求不需更換燈泡的概率和更換2只燈泡的概率;

(2)在第二次燈泡更換工作中,對(duì)其中的某一盞燈來(lái)說,求該盞燈需要更換燈泡的概率;

(3)當(dāng)p1=0.8,p2=0.3時(shí),求在第二次燈泡更換工作中,至少需要更換4只燈泡的概率(結(jié)果保留兩個(gè)有效數(shù)字).

解:(1)在第一次更換燈泡工作中,不需更換燈泡的概率為p15,需要更換2只燈泡的概率為C25p13(1-p1)2.

    (2)對(duì)該盞燈來(lái)說,在第一、二次都更換了燈泡的概率為(1-p1)2;在第一次未更換燈泡而在第二次需要更換燈泡的概率為p1(1-p2).故所求的概率為

    p=(1-p1)2+p1(1-p2).

    (3)至少換4只燈泡包括換5只和換4只兩種情況.換5只的概率為p5〔其中p為(2)中所求,下同〕;換4只的概率為C15p4(1-p).故至少換4只燈泡的概率為

    p3=p5+C15p4(1-p).

    又當(dāng)p1=0.8,p2=0.3時(shí),p=0.22+0.8×0.7=0.6.

    ∴p3=0.65+5×0.64×0.4=0.34,

    即滿2年至少需要換4只燈泡的概率為0.34.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

21、某會(huì)議室用5盞燈照明,每盞燈各使用燈泡一只,且型號(hào)相同.假定每盞燈能否正常照明只與燈泡的壽命有關(guān),該型號(hào)的燈泡壽命為1年以上的概率為p1,壽命為2年以上的概率為p2.從使用之日起每滿1年進(jìn)行一次燈泡更換工作,只更換已壞的燈泡,平時(shí)不換.
(Ⅰ)在第一次燈泡更換工作中,求不需要換燈泡的概率和更換2只燈泡的概率;
(Ⅱ)在第二次燈泡更換工作中,對(duì)其中的某一盞燈來(lái)說,求該盞燈需要更換燈泡的概率;
(Ⅲ)當(dāng)p1=0.8,p2=0.3時(shí),求在第二次燈泡更換工作,至少需要更換4只燈泡的概率(結(jié)果保留兩個(gè)有效數(shù)字).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(05年湖北卷文)(12分)

某會(huì)議室用5盞燈照明,每盞燈各使用燈泡一只,且型號(hào)相同.假定每盞燈能否正常照明只與燈泡的壽命有關(guān),該型號(hào)的燈泡壽命為1年以上的概率為p1,壽命為2年以上的概率為p2.從使用之日起每滿1年進(jìn)行一次燈泡更換工作,只更換已壞的燈泡,平時(shí)不換.

   (Ⅰ)在第一次燈泡更換工作中,求不需要換燈泡的概率和更換2只燈泡的概率;

   (Ⅱ)在第二次燈泡更換工作中,對(duì)其中的某一盞燈來(lái)說,求該盞燈需要更換燈泡的概率;

   (Ⅲ)當(dāng)p1=0.8,p2=0.3時(shí),求在第二次燈泡更換工作,至少需要更換4只燈泡的概率(結(jié)果保留兩個(gè)有效數(shù)字).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某會(huì)議室用5盞燈照明,每盞燈各使用燈泡一只,且型號(hào)相同.假定每盞燈能否正常照明只與燈泡的壽命有關(guān),該型號(hào)的燈泡壽命為1年以上的概率為p1,壽命為2年以上的概率為p2.從使用之日起每滿1年進(jìn)行一次燈泡更換工作,只更換已壞的燈泡,平時(shí)不換.?

(1)在第一次燈泡更換工作中,求不需更換燈泡的概率和更換2只燈泡的概率;?

(2)在第二次燈泡更換工作中,對(duì)其中的某一盞燈來(lái)說,求該盞燈需要更換燈泡的概率;?

(3)當(dāng)p1=0.8,p2=0.3時(shí),求在第二次燈泡更換工作中,至少需要更換4只燈泡的概率(結(jié)果保留兩個(gè)有效數(shù)字).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:湖北省高考真題 題型:解答題

某會(huì)議室用5盞燈照明,每盞燈各使用燈泡一只,且型號(hào)相同。假定每盞燈能否正常照明只與燈泡的壽命有關(guān),該型號(hào)的燈泡壽命為1年以上的概率為p1,壽命為2年以上的概率為p2;從使用之日起每滿1年進(jìn)行一次燈泡更換工作,只更換已壞的燈泡,平時(shí)不換,
(Ⅰ)在第一次燈泡更換工作中,求不需要換燈泡的概率和更換2只燈泡的概率;
(Ⅱ)在第二次燈泡更換工作中,對(duì)其中的某一盞燈來(lái)說,求該盞燈需要更換燈泡的概率;
(Ⅲ)當(dāng)p1=0.8,p2=0.3時(shí),求在第二次燈泡更換工作中,至少需要更換4只燈泡的概率(結(jié)果保留兩個(gè)有效數(shù)字)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某會(huì)議室用5盞燈照明,每盞燈各使用燈泡一只,且型號(hào)相同.假定每盞燈能否正常照明只與燈泡的壽命有關(guān),該型號(hào)的燈泡壽命為1年以上的概率為P1,壽命為2年以上的概率為P2.從使用之日起每滿1年進(jìn)行一次燈泡更換工作,只更換已壞的燈泡,平時(shí)不換.

(1)在第一次燈泡更換工作中,求不需要換燈泡的概率和更換2只燈泡的概率;

(2)在第二次燈泡更換工作中,對(duì)其中的某一盞燈來(lái)說,求該盞燈需要更換燈泡的概率;

(3)當(dāng)P1=0.8,P2=0.3時(shí),求在第二次燈泡更換工作,至少需要更換4只燈泡的概率(結(jié)果保留兩個(gè)有效數(shù)字).

查看答案和解析>>

同步練習(xí)冊(cè)答案