已知離心率為
1
2
的橢圓C,其中心在原點(diǎn),焦點(diǎn)在坐標(biāo)軸上,該橢圓的一個(gè)短軸頂點(diǎn)與其兩焦點(diǎn)構(gòu)成一個(gè)面積為4
3
的等腰三角形,則橢圓C的長(zhǎng)軸長(zhǎng)為(  )
A、4
B、8
C、4
2
D、8
2
分析:已知離心率為
1
2
,則a=2c,再根據(jù)橢圓的一個(gè)頂點(diǎn)與兩個(gè)焦點(diǎn)構(gòu)成等腰三角形,可得bc的值,再由a2=b2+c2,即可得到橢圓C的長(zhǎng)軸長(zhǎng).
解答:解:由橢圓C的離心率為
1
2
,
c
a
=
1
2
,即a=2c,
又由橢圓的一個(gè)短軸頂點(diǎn)與其兩焦點(diǎn)構(gòu)成一個(gè)面積為4
3
的等腰三角形,
1
2
b×2c=4
3

即b=
4
3
c
,
又∵a2=b2+c2,∴4c2=(
4
3
c
)2+c2
,
解得:c=2,
則橢圓C的長(zhǎng)軸長(zhǎng)為2×2c=8.
故選:B.
點(diǎn)評(píng):本題考查橢圓的幾何性質(zhì),考查學(xué)生的計(jì)算能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•懷化三模)已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
過點(diǎn)(
3
,
3
2
)
,離心率e=
1
2
,若點(diǎn)M(x0,y0)在橢圓C上,則點(diǎn)N(
x0
a
y0
b
)
稱為點(diǎn)M的一個(gè)“橢點(diǎn)”,直線l交橢圓C于A、B兩點(diǎn),若點(diǎn)A、B的“橢點(diǎn)”分別是P、Q,且以PQ為直徑的圓經(jīng)過坐標(biāo)原點(diǎn)O.
(1)求橢圓C的方程;
(2)若橢圓C的右頂點(diǎn)為D,上頂點(diǎn)為E,試探究△OAB的面積與△ODE的面積的大小關(guān)系,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
1
2
,橢圓的短軸端點(diǎn)與雙曲線
y2
2
-x2
=1的焦點(diǎn)重合,過P(4,0)且不垂直于x軸直線l與橢圓C相交于A、B兩點(diǎn).
(Ⅰ)求橢C的方程;
(Ⅱ)求
OA
OB
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:懷化三模 題型:解答題

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
過點(diǎn)(
3
3
2
)
,離心率e=
1
2
,若點(diǎn)M(x0,y0)在橢圓C上,則點(diǎn)N(
x0
a
y0
b
)
稱為點(diǎn)M的一個(gè)“橢點(diǎn)”,直線l交橢圓C于A、B兩點(diǎn),若點(diǎn)A、B的“橢點(diǎn)”分別是P、Q,且以PQ為直徑的圓經(jīng)過坐標(biāo)原點(diǎn)O.
(1)求橢圓C的方程;
(2)若橢圓C的右頂點(diǎn)為D,上頂點(diǎn)為E,試探究△OAB的面積與△ODE的面積的大小關(guān)系,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年度新課標(biāo)高三上學(xué)期數(shù)學(xué)單元測(cè)試9-理科-解析幾何 題型:解答題

 (09廣東19)(12分)

已知橢圓G的中心在坐標(biāo)原點(diǎn),長(zhǎng)軸在軸上,離心率為,兩個(gè)焦點(diǎn)分別為,橢

圓G上一點(diǎn)到的距離之和為12.圓:的圓心為點(diǎn)

   (1)求橢圓G的方程

   (2)求的面積

   (3)問是否存在圓包圍橢圓G?請(qǐng)說(shuō)明理由.

 

 

 

 

 

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案