分析 (1)橢圓C2中,c=1,b=$\frac{\sqrt{2}}{\sqrt{1+1}}$=1,a=$\sqrt{2}$,則橢圓C2的離心率;
(2)由題意知直線l的斜率存在,設(shè)出直線l方程為y=k(x-2),再設(shè)P(x0,y0),將直線方程代入橢圓方程,化為關(guān)于x的一元二次方程,由判別式大于0求得k的范圍,利用根與系數(shù)關(guān)系結(jié)合t$\overrightarrow{OE}$-$\overrightarrow{OA}$-$\overrightarrow{OB}$=$\overrightarrow{0}$,求出t與k的關(guān)系后由k得范圍可得t的范圍.
解答 解:(1)由已知,拋物線C1的焦點為(1,0)-------(2分)
故橢圓C2中,c=1,b=$\frac{\sqrt{2}}{\sqrt{1+1}}$=1,a=$\sqrt{2}$-------(4分)
故離心率為e=$\frac{1}{\sqrt{2}}$=$\frac{\sqrt{2}}{2}$.-------(5分)
(2)由已知,直線l的斜率顯然存在,設(shè)其方程為y=k(x-2),聯(lián)立橢圓方程$\frac{{x}^{2}}{2}$+$\frac{{y}^{2}}{1}$=1得(1+2k2)x2-8k2x+8k2-2=0.由△>0得k2<$\frac{1}{2}$
設(shè)A(x1,y1),B(x2,y2),E(x0,y0)則有:
x1+x2=$\frac{8{k}^{2}}{1+2{k}^{2}}$,x1x2=$\frac{8{k}^{2}-2}{1+2{k}^{2}}$-------(7分)
由已知 t$\overrightarrow{OE}$=$\overrightarrow{OA}$+$\overrightarrow{OB}$,得t(x0,y0)=(x1+x2,y1+y2)
x0=$\frac{{x}_{1}+{x}_{2}}{t}$$\frac{8{k}^{2}}{t(1+2{k}^{2})}$,y0=$\frac{{y}_{1}+{y}_{2}}{t}$$\frac{1}{t}$[k(x1+x2)-4k]=$\frac{-4k}{t(1+2{k}^{2})}$
將點E代入橢圓得[$\frac{8{k}^{2}}{t(1+2{k}^{2})}$]2+2[$\frac{-4k}{t(1+2{k}^{2})}$]2=2
得到16k2=t2(1+k2)-------(9分)
故t2=$\frac{16{k}^{2}}{1+2{k}^{2}}$=$\frac{16}{\frac{1}{{k}^{2}}+2}$<$\frac{16}{2+2}$=4,故-2<t<2為所求.-------(13分)
點評 本題主要考查橢圓方程與性質(zhì),考查了直線與拋物線的位置關(guān)系的應(yīng)用,直線與曲線聯(lián)立,根據(jù)方程的根與系數(shù)的關(guān)系解題,是處理這類問題的最為常用的方法,但圓錐曲線的特點是計算量比較大,要求考生具備較強的運算推理的能力,是壓軸題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1個 | B. | 2個 | C. | 3個 | D. | 2個 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (0,4) | B. | (0,4] | C. | [0,4) | D. | [0,4] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com