已知

(1)判斷函數(shù)的奇偶性;

(2)證明f(x)>0.

答案:略
解析:

(1),即,∴x0,即函數(shù)f(x)的定義域為{xÎ R|x0}

,

∴函數(shù)f(x)是偶函數(shù).

(2)證明,當(dāng)x0時,則,,∴

f(x)=f(x),當(dāng)x0時,f(x)=f(x)0.綜上所述f(x)0


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=loga
2m-1-mxx+1
(a>0,a≠1)
是奇函數(shù),定義域為區(qū)間D(使表達式有意義的實數(shù)x 的集合).
(1)求實數(shù)m的值,并寫出區(qū)間D;
(2)若底數(shù)a>1,試判斷函數(shù)y=f(x)在定義域D內(nèi)的單調(diào)性,并說明理由;
(3)當(dāng)x∈A=[a,b)(A⊆D,a是底數(shù))時,函數(shù)值組成的集合為[1,+∞),求實數(shù)a、b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

24、已知下表為定義域為R的函數(shù)f(x)=ax3+cx+d若干自變量取值及其對應(yīng)函數(shù)值,為便于研究,相關(guān)函數(shù)值非整數(shù)值時,取值精確到0.01.
x 3.27 1.57 -0.61 -0.59 0.26 0.42 -0.35 -0.56 0 4.25
y -101.63 -10.04 0.07 0.03 0.21 0.20 -0.22 -0.03 0 -226.05
根據(jù)表中數(shù)據(jù)解答下列問題:
(1)函數(shù)y=f(x)在區(qū)間[0.55,0.6]上是否存在零點,寫出判斷并說明理由;
(2)證明:函數(shù)y=f(x)在區(qū)間(-∞,-0.35]單調(diào)遞減.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在[-1,1]上的奇函數(shù). 當(dāng)a,b∈[-1,1],且a+b≠0時,有
f(a)+f(b)a+b
>0
成立.
(Ⅰ)判斷函f(x)的單調(diào)性,并證明;
(Ⅱ)若f(1)=1,且f(x)≤m2-2bm+1對所有x∈[-1,1],b∈[-1,1]恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•溫州一模)已知函f(x)=ax2-ex(a∈R).
(Ⅰ)a=1時,試判斷f(x)的單調(diào)性并給予證明;
(Ⅱ)若f(x)有兩個極值點x1,x2(x1<x2).
(i) 求實數(shù)a的取值范圍;
(ii)證明:-
e2
<f(x1)<-1
. (注:e是自然對數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2006•寶山區(qū)二模)已知f(x)=
10x+a10x+1
是奇函數(shù).
(1)求a的值;
(2)求f(x)的反函 數(shù) f-1(x),判斷f-1(x)的奇偶性,并給予證明;
(3)若函數(shù)y=F(x)是以2為周期的奇函數(shù),當(dāng)x∈(-1,0)時,F(xiàn)(x)=f-1(x),求x∈(2,3)時F(x)的表達式.

查看答案和解析>>

同步練習(xí)冊答案