已知函數(shù).
(Ⅰ)求的單調(diào)區(qū)間;
(Ⅱ)設(shè),若對(duì)任意,均存在,使得,求的取值范圍。
解:(Ⅰ).
①當(dāng)時(shí),由于,故,
所以,的單調(diào)遞增區(qū)間為
②當(dāng)時(shí),由,得.
在區(qū)間上,,在區(qū)間,
所以,函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.
(Ⅱ)由已知,轉(zhuǎn)化為.

由(Ⅱ)知,當(dāng)時(shí),上單調(diào)遞增,值域?yàn)?img src="http://thumb.1010pic.com/pic2/upload/papers/20140823/20140823181336796213.gif" style="vertical-align:middle;" />,故不符合題意.
(或者舉出反例:存在,故不符合題意.)
當(dāng)時(shí),上單調(diào)遞增,在上單調(diào)遞減,
極大值即為最大值,,
所以
解得.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù),則(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
已知函數(shù)f(x)=x3+ax2+ax-2(a∈R),
(1)若函數(shù)f(x)在區(qū)間(-∞,+∞)上為單調(diào)增函數(shù),求實(shí)數(shù)a的取值范圍;
(2)設(shè)A(x1,f(x1))、B(x2,f(x2))是函數(shù)f(x)的兩個(gè)極值點(diǎn),若直線AB的斜率不小于-,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
已知函數(shù)f(x)=-x (e為自然對(duì)數(shù)的底數(shù)).
(Ⅰ)求f(x)的最小值;
(Ⅱ)不等式f(x)>ax的解集為P,若M={x|≤x≤2}且M∩P≠,求實(shí)數(shù)a的
取值范圍;
(Ⅲ)已知n∈N﹡,且(t為常數(shù),t≥0),是否存在等比數(shù)列{},使得b1+b2+…?若存在,請(qǐng)求出數(shù)列{}的通項(xiàng)公式;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若曲線存在斜率為的切線,則實(shí)數(shù)的取值范圍是        .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

利用定積分的幾何意義,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在函數(shù)的圖象上,其切線的傾斜角小于的點(diǎn)中,坐標(biāo)為整數(shù)的點(diǎn)的個(gè)是          
A.3B.2 C.1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若函數(shù),若, 則
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè),若,則____________.

查看答案和解析>>

同步練習(xí)冊(cè)答案