已知M={2,a2-3a+5,5},N={1,a2-6a+10,3},且M∩N={2,3},則a的值為( )
A.1或2
B.2或4
C.2
D.1
【答案】分析:根據(jù)交集的定義可知,2和3為集合M和集合N的公共元素,得到a2-3a+5=3①且a2-6a+10=2②,聯(lián)立①②,求出a的值即可.
解答:解:根據(jù)M∩N={2,3}可知:3∈M,2∈N即a2-3a+5=3①且a2-6a+10=2②
解①得a=1,a=2;解②得a=2,a=4.所以a的值為2
故選C
點(diǎn)評(píng):此題是一道以一元二次方程的解為平臺(tái),考查學(xué)生掌握交集的定義,會(huì)進(jìn)行合理的推算.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

1、已知M={2,a2-3a+5,5},N={1,a2-6a+10,3},且M∩N={2,3},則a的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知M={2,a2-3a+5,5},N={1,a2-6a+10,3},且M∩N={2,3},則a的值為(  )
A.1或2B.2或4C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2007-2008學(xué)年安徽省宣城市廣德三中高一(上)第一次月考數(shù)學(xué)試卷(解析版) 題型:選擇題

已知M={2,a2-3a+5,5},N={1,a2-6a+10,3},且M∩N={2,3},則a的值為( )
A.1或2
B.2或4
C.2
D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年江西省撫州市南城縣高一(上)月考數(shù)學(xué)試卷(解析版) 題型:選擇題

已知M={2,a2-3a+5,5},N={1,a2-6a+10,3},且M∩N={2,3},則a的值為( )
A.1或2
B.2或4
C.2
D.1

查看答案和解析>>

同步練習(xí)冊(cè)答案