【題目】已知函數(shù)f(x)=|x﹣2|,g(x)=﹣|x+3|+m.
(1)當(dāng)m=7時(shí),解關(guān)于x的不等式f(x)﹣g(x)>0;
(2)若函數(shù)f(x)的圖象恒在函數(shù)g(x)圖象的上方,求m的取值范圍.
【答案】(1){x|x<﹣4或x>3}(2)m<5
【解析】解:(1)當(dāng)m=7時(shí),f(x)﹣g(x)=|x﹣2|+|x+3|>7.
x<﹣3時(shí),﹣x+2﹣x﹣3>7,即x<﹣4,∴x<﹣4;
﹣3≤x≤2時(shí),﹣x+2﹣x﹣3>7,不成立;
x>2時(shí),x﹣2+x+3>7,即x>3,∴x>3;
綜上所述,不等式f(x)﹣g(x)>0的解集為{x|x<﹣4或x>3};
(2)∵f(x)=|x﹣2|,g(x)=﹣|x+3|+m,函數(shù)f(x)的圖象恒在函數(shù)g(x)圖象的上方,
∴g(x)max<f(﹣3),即m<f(﹣3)=5.
∴m的取值范圍為:m<5.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合M={0,1,2,3,4},N={1,3,5},P=M∩N,則P的子集共有( )
A.2個(gè) B.4個(gè) C.6個(gè) D.8個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=4x+m·2x+1有且僅有一個(gè)零點(diǎn),求m的取值范圍,并求出該零點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司為了適應(yīng)市場(chǎng)需求對(duì)某產(chǎn)品結(jié)構(gòu)進(jìn)行了重大調(diào)整,調(diào)整后初期利潤(rùn)增長(zhǎng)迅速,后來增長(zhǎng)越來越慢.若要建立恰當(dāng)?shù)暮瘮?shù)模型來反映該公司調(diào)整后利潤(rùn)y與時(shí)間x的關(guān)系,可選用
A.一次函數(shù)模型 B.二次函數(shù)模型
C.指數(shù)函數(shù)模型 D.對(duì)數(shù)函數(shù)模型
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知偶函數(shù)f(x)=loga|x-b|在(-∞,0)上單調(diào)遞增,則f(a+1)與f(b+2)的大小關(guān)系是( )
A. f(a+1)≥f(b+2)
B. f(a+1)<f(b+2)
C. f(a+1)≤f(b+2)
D. f(a+1)>f(b+2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知全集U={1,2,3,4,5},集合A={1,3,5},則UA=( )
A.{2,4} B.{1,3,5} C.{1,2,3,4,5} D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】半徑為6的圓與x軸相切,且與圓x2+(y-3)2=1內(nèi)切,則此圓的方程為( )
A.(x-4)2+(y-6)2=6
B.(x±4)2+(y-6)2=6
C.(x-4)2+(y-6)2=36
D.(x±4)2+(y-6)2=36
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】求過兩圓x2+y2-x-y-2=0與x2+y2+4x-8y-8=0的交點(diǎn)和點(diǎn)(3,1)的圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知全集U={1,2,3,4,5,6,7,8},A={x|x2-3x+2=0},B={x|1≤x≤5,x∈Z},C={x|2<x<9,x∈Z}.求
(1)A∪(B∩C);(2)(UB)∪(UC).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com