如圖,已知是橢圓的右焦點;圓與軸交于兩點,其中是橢圓的左焦點.
(1)求橢圓的離心率;
(2)設(shè)圓與軸的正半軸的交點為,點是點關(guān)于軸的對稱點,試判斷直線與圓的位置關(guān)系;
(3)設(shè)直線與圓交于另一點,若的面積為,求橢圓的標準方程.
(1);(2)相切;(3).
【解析】
試題分析:(1)將點代入圓的方程,得出與的等量關(guān)系,進而求出橢圓的離心率;(2)先求出點、的坐標,進而求出直線的斜率,通過直線的斜率與直線的斜率的乘積為,得到,進而得到直線與圓的位置關(guān)系;(3)通過為的中位線得到與的面積,從而求出的值,進而求出與的值,從而確定橢圓的標準方程.
試題解析:(1)圓過橢圓的左焦點,把代入圓的方程,得,
故橢圓的離心率;
(2)在方程中令得,可知點為橢圓的上頂點,
由(1)知,,故,,故,
在圓的方程中令可得點坐標為,則點為,
于是可得直線的斜率,而直線的斜率,
,直線與圓相切;
(3)是的中線,,
,從而得,,橢圓的標準方程為.
考點:1.橢圓的離心率;2.直線與圓的位置關(guān)系;3.橢圓的方程
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年廣東省揭陽市高三學(xué)業(yè)水平考試理科數(shù)學(xué)試卷(解析版) 題型:解答題
如圖,已知是橢圓的右焦點;圓與軸交于兩點,其中是橢圓的左焦點.
(1)求橢圓的離心率;
(2)設(shè)圓與軸的正半軸的交點為,點是點關(guān)于軸的對稱點,試判斷直線與圓的位置關(guān)系;
(3)設(shè)直線與圓交于另一點,若的面積為,求橢圓的標準方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆浙江省高二下學(xué)期期中文科數(shù)學(xué)試卷(解析版) 題型:填空題
如圖,已知是橢圓 的左、右焦點,
點在橢圓上,線段與圓相切于點,且點為線段的中點,則橢圓的離心率為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省臺州市四校高三第一次聯(lián)考理科數(shù)學(xué)試卷 題型:填空題
如圖,已知是橢圓 的左、右焦點, 點在橢圓上,線段與圓相切于點,且點為線段的中點,則橢圓的離心率為 ▲ .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆江蘇省高二上學(xué)期期中數(shù)學(xué)試卷 題型:填空題
如圖,已知是橢圓 的左、右焦點,點在橢圓上,線段與圓相切于點,且點為線段的中點,則橢圓的離心率為
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com