【題目】(本題滿(mǎn)分12分)袋中裝有黑色球和白色球共7個(gè),從中任取2個(gè)球都是白色球的概率為.現(xiàn)有甲、乙兩人從袋中輪流摸出1個(gè)球,甲先摸,乙后摸,然后甲再摸,……,摸后均不放回,直到有一人摸到白色球后終止.每個(gè)球在每一次被摸出的機(jī)會(huì)都是等可能的,用X表示摸球終止時(shí)所需摸球的次數(shù).

(1)求隨機(jī)變量X的分布列和均值E(X);

(2)求甲摸到白色球的概率.

【答案】(1)分布列見(jiàn)解析,E(X)=2.

(2) P(A)=.

【解析】分析:(1)由已知先出白子個(gè)數(shù),進(jìn)而可得隨機(jī)變量X的概率分布列和數(shù)學(xué)期望;

(2)記事件A為“甲摸到白色球”,則事件A包括以下三個(gè)互斥事件:A1=“甲第1次摸球時(shí)摸出白色球”;A2=“甲第2次摸球時(shí)摸出白色球”;A3=“甲第3次摸球時(shí)摸出白色球”,利用互斥事件概率加法公式可得.

詳解:設(shè)袋中白色球共有x個(gè),xN*x≥2,則依題意知,

所以,即x2x-6=0,解得x=3(x=-2舍去).

(1)袋中的7個(gè)球,3白4黑,隨機(jī)變量X的所有可能取值是1,2,3,4,5.

P (X=1)=,P(X=2)=,P(X=3)=,P(X=4)=,P(X=5)=.

隨機(jī)變量X的分布列為

X

1

2

3

4

5

P

所以E(X)=1×+2×+3×+4×+5×=2.

(2)記事件A為“甲摸到白色球”,則事件A包括以下三個(gè)互斥事件:

A1=“甲第1次摸球時(shí)摸出白色球”;

A2=“甲第2次摸球時(shí)摸出白色球”;

A3=“甲第3次摸球時(shí)摸出白色球”.

依題意知,P(A1)=,P(A2)=,P(A3)=,

所以甲摸到白色球的概率為P(A)=P(A1)+P(A2)+P(A3)=.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合A={x|x2﹣2x>0}, ,則(
A.A∩B=
B.A∪B=R
C.BA
D.AB

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】袋子中有四張卡片,分別寫(xiě)有“瓷、都、文、明”四個(gè)字,有放回地從中任取一張卡片,將三次抽取后“瓷”“都”兩個(gè)字都取到記為事件,用隨機(jī)模擬的方法估計(jì)事件發(fā)生的概率.利用電腦隨機(jī)產(chǎn)生整數(shù)0,1,2,3四個(gè)隨機(jī)數(shù),分別代表“瓷、都、文、明”這四個(gè)字,以每三個(gè)隨機(jī)數(shù)為一組,表示取卡片三次的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了以下18組隨機(jī)數(shù):

232

321

230

023

123

021

132

220

001

231

130

133

231

031

320

122

103

233

由此可以估計(jì)事件發(fā)生的概率為(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列的前項(xiàng)和為,滿(mǎn)足,數(shù)列滿(mǎn)足,且.

(1)求數(shù)列的通項(xiàng)公式;

(2)求證:數(shù)列是等差數(shù)列,求數(shù)列的通項(xiàng)公式;

(3)若,數(shù)列的前項(xiàng)和為,對(duì)任意的,都有,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一張足夠大的紙板上截取一個(gè)面積為3600平方厘米的矩形紙板ABCD,然后在矩形紙板的四個(gè)角上切去邊長(zhǎng)相等的小正方形,再把它的邊沿虛線(xiàn)折起,做成一個(gè)無(wú)蓋的長(zhǎng)方體紙盒(如圖).設(shè)小正方形邊長(zhǎng)為x厘米,矩形紙板的兩邊AB,BC的長(zhǎng)分別為a厘米和b厘米,其中a≥b.
(1)當(dāng)a=90時(shí),求紙盒側(cè)面積的最大值;
(2)試確定a,b,x的值,使得紙盒的體積最大,并求出最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將函數(shù)的圖像向左平移個(gè)單位長(zhǎng)度,再將圖像上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的倍(縱坐標(biāo)不變),得到的圖像.

(1)求的單調(diào)遞增區(qū)間;

(2)若對(duì)于任意的,不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)a,b∈R.若直線(xiàn)l:ax+y﹣7=0在矩陣A= 對(duì)應(yīng)的變換作用下,得到的直線(xiàn)為l′:9x+y﹣91=0.求實(shí)數(shù)a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)若, 都是從0,1,2,3,4五個(gè)數(shù)中任取的一個(gè)數(shù),求上述函數(shù)有零點(diǎn)的概率;

(2)若, 都是從區(qū)間上任取的一個(gè)數(shù),求成立的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在棱長(zhǎng)為的正方體中,OAC的中點(diǎn),E是線(xiàn)段D1O上一點(diǎn),且D1E=λEO.

(1)若λ=1,求異面直線(xiàn)DECD1所成角的余弦值;

(2)若平面CDE平面CD1Oλ的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案