已知橢圓C:=1(a>b>0)的一個頂點為A(2,0),離心率為.直線y=k(x-1)與橢圓C交于不同的兩點M,N.

(1)求橢圓C的方程;

(2)當△AMN的面積為時,求k的值.

 

(1)=1(2)k=±1.

【解析】(1)由題意得解得b=,所以橢圓C的方程為=1.

(2)由得(1+2k2)x2-4k2x+2k2-4=0.設點M,N的坐標分別為(x1,y1),(x2,y2),

則y1=k(x1-1),y2=k(x2-1),x1+x2=,x1x2=,

所以MN=.

又因為點A(2,0)到直線y=k(x-1)的距離d=,所以△AMN的面積為S=MN·d=.由,解得k=±1.

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第九章第4課時練習卷(解析版) 題型:解答題

如圖,圓O1與圓O2的半徑都是1,O1O2=4,過動點P分別作圓O1、圓O2的切線PM、PN(M、N分別為切點),使得PM=PN,試建立適當?shù)淖鴺讼,并求動點P的軌跡方程.

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第九章第11課時練習卷(解析版) 題型:解答題

設A1、A2與B分別是橢圓E:=1(a>b>0)的左、右頂點與上頂點,直線A2B與圓C:x2+y2=1相切.

(1)求證:=1;

(2)P是橢圓E上異于A1、A2的一點,若直線PA1、PA2的斜率之積為-,求橢圓E的方程;

(3)直線l與橢圓E交于M、N兩點,且·=0,試判斷直線l與圓C的位置關系,并說明理由.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第九章第11課時練習卷(解析版) 題型:填空題

以雙曲線-3x2+y2=12的焦點為頂點,頂點為焦點的橢圓的方程是________.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第九章第10課時練習卷(解析版) 題型:解答題

給定橢圓C:=1(a>b>0),稱圓心在原點O、半徑是的圓為橢圓C的“準圓”.已知橢圓C的一個焦點為F(,0),其短軸的一個端點到點F的距離為.

(1)求橢圓C和其“準圓”的方程;

(2)若點A是橢圓C的“準圓”與x軸正半軸的交點,B、D是橢圓C上的兩相異點,且BD⊥x軸,求·的取值范圍;

(3)在橢圓C的“準圓”上任取一點P,過點P作直線l1,l2,使得l1,l2與橢圓C都只有一個交點,試判斷l(xiāng)1,l2是否垂直?并說明理由.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第九章第10課時練習卷(解析版) 題型:解答題

已知曲線E:ax2+by2=1(a>0,b>0),經(jīng)過點M的直線l與曲線E交于點A、B,且=-2.

(1)若點B的坐標為(0,2),求曲線E的方程;

(2)若a=b=1,求直線AB的方程.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年陜西西工大附中高三上學期第四次適應性訓練理數(shù)學卷(解析版) 題型:解答題

某工廠在試驗階段大量生產(chǎn)一種零件,這種零件有、兩項技術指標需要檢測,設各項技術指標達標與否互不影響.若有且僅有一項技術指標達標的概率為,至少一項技術指標達標的概率為.按質量檢驗規(guī)定:兩項技術指標都達標的零件為合格品.

(1)求一個零件經(jīng)過檢測為合格品的概率是多少?

(2)任意依次抽取該種零件4個,設表示其中合格品的個數(shù),求的分布列及數(shù)學期望

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年陜西西工大附中高三上學期第四次適應性訓練理數(shù)學卷(解析版) 題型:選擇題

,則的值是( )

A. B.1 C. D.2

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年陜西西安鐵一中國際合作學校高三下第一次模擬考試理科數(shù)學試卷(解析版) 題型:選擇題

曲線處的切線平行于直線,則點的坐標為( )

A B C D

 

查看答案和解析>>

同步練習冊答案